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Abstract— In this paper, a new hybrid genetic algorithm –
known as HGA – is proposed for solving the Bounded Diameter
Minimum Spanning Tree (BDMST) problem. We experiment
with HGA on two sets of benchmark problem instances, both
Euclidean and Non-Euclidean. On the Euclidean problem
instances, HGA is shown to outperform the previous best two
Genetic Algorithms (GAs) reported in the BDMST literature,
while on the Non-Euclidean problem instance, HGA performs
comparably with these two GAs.  

I. INTRODUCTION

he bounded diameter minimum spanning tree (BDMST)
problem is a combinatorial optimization problem that

arises in many applications such as design of wire-based
communication networks under quality of service
requirements, in ad-hoc wireless networks [3], and in data
compression and in distributed mutual exclusion algorithms
[2, 6]. A more comprehensive discussion of the real-world
applications of BDMST was given in Abdalla’s seminal
dissertation [10].

T

Before the BDMST problem can be formally stated, we
need to define some concepts relating to tree diameter, and
center. Given a tree T, the maximal eccentricity of vertex v is
the length (measured in the number of edges) of the longest
path from v to other vertices. The diameter of a tree T,
denoted as diam(T), is the maximal eccentricity over all
nodes in T (i.e the length of maximal path between two
arbitrary vertices in T). Suppose that a diameter of a tree is
defined by the path v1, v2,…, v[k/2], v[k/2]+1, …, vk. If k is even
then v[k/2] is called a center of the tree. If k is odd then v[k/2]

and v[k/2]+1 are centers of the tree. In that case, the edge (v[k/2],
v[k/2]+1) is called a center edge. 

Let G = (V, E) be a connected undirected graph with
positive edge weights w(e). The BDMST problem can be
formulated as follows: among spanning trees of G whose
diameters do not exceed a given upper bound D≥2, find the
spanning tree with the minimal cost (sum of the weights on
edges of the trees). As in almost all studies of the BDMST
problem, and without lost of generality, we will assume that
G is a complete graph.

That is, we can formulate the problem as:

Find a spanning tree T = (V, E ) of G that minimize 
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This problem is known to be NP-hard for 4 ≤ D ≤ |V|-1
[1]. Moreover, the BDMST problem has been shown to be
also approximate-hard, in that there is no polynomial time
algorithm which could guarantee to find a solution that has a
cost within log(|V|) of the optimum [22]. Therefore, heuristic
and meta-heuristic techniques are currently the only method
for improving the solution quality in solving the BDMST
problem, especially when n is large. 

In this paper, we introduce a new hybrid genetic algorithm
(HGA) for solving BDMST problems. The new genetic
algorithm use a multi-population, where each population is
initialized with a different well known heuristic. The
individuals in each population will subsequently compete for
positions in a selection population, using a simulated
annealing mechanism based on proportionate selection; in
the selection population, they will combine and evolve
toward the optimum. We compare our results with two other
genetic algorithms on the same problem, namely, the genetic
algorithm in [12] of Raidl and Julstrom (called RJ-ESEA in
this paper), and the genetic algorithm of Alok and Gupta in
[21] (called PEA-I).

The paper is organized as follows. In the next section
(section 2), we briefly overview work done in solving
BDMST problems, highlighting the motivations for our
work. Section 3 contains the description of our new hybrid
genetic algorithm for the BDMST problem. The details of
our experiments are given in section 4, while the
computational and comparative results are given and
discussed in section 5 of the paper. The paper concludes with
section 6, where we also describe some possible future
extensions of this work. 

II.PREVIOUS WORK ON THE BDMST PROBLEM

Techniques for solving the BDMST problem may be
classified into two categories: exact methods and inexact
(heuristic) methods. Exact approaches for solving the
BDMST problem are based on mixed linear integer
programming [5, 15]. More recently, Gruber and Raidl
suggested a branch and cut algorithm based on compact 0-1
integer linear programming [16]. However, being
deterministic and exhaustive in nature, these approaches
could only be used to solve small problem instances (e.g.
complete graphs with less than 100 nodes).

Abdalla et al. [8] presented a greedy heuristic algorithm,
the One Time Tree Construction (OTTC) for solving the
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BDMST problem. OTTC is based on Prim’s algorithm in
[23]. It starts with a set of vertices, initially containing a
randomly chosen vertex. The set is then repeatedly extended
by adding a new vertex that is nearest (in cost) to the set, as
long as the inclusion of the new node does not violate the
constraint on the diameter of the tree. This algorithm is time
consuming, and its performance is strongly dependent on the
starting vertex [21].

Raidl and Julstrom proposed in [12] a modified version of
OTTC, called Random Greedy Heuristics (RGH). RGH
starts from a centre by randomly selecting a vertex and
keeping it as the fixed center during the search. It then
repeatedly extends the spanning tree from the center by
adding a randomly chosen vertex from the remaining
vertices, and connecting it to a vertex that is already in the
tree via an edge with the smallest weight. 

Raidl and Julstrom proposed a genetic algorithm for
solving BDMST problems which used edge-set coded [12]
and permutation-coded representations for individuals [13].
Permutation-coded evolutionary algorithms were reported to
give better results than edge-set coded, but usually are much
more time consuming. Another genetic algorithm, based on a
random key representation, was derived in [14], sharing
many similarities with the permutation-coded evolutionary
algorithms. In [17], Gruber used four neighbourhood types
to implement variable neighbourhood local search for
solving the BDMST problem. They are: arc exchange
neighbourhood, level change neighbourhood, node swap
neighbourhood, and center change level neighbourhood.
Later, Raidl and Julstrom [18] re-used variable
neighbourhood searches as in [17], embedding them in Ant
Colony Optimization (ACO) and genetic algorithms for
solving the BDMST problem. Both of their proposed
algorithms (ACO and GA) exploited the neighbourhood
structure to conduct local search, to improve candidate
solutions. In, [20], Nghia and Binh proposed a new
recombination operator which uses multiple parents to do
the recombination in their genetic algorithm. Their proposed
crossover operator helped to improve the minimum and
mean weights of the evolved spanning trees [20]. 

More recently, in [21], Alok and Gupta derived two
improvements for RGH heuristics (given in [12]) and some
new genetic algorithms for solving BDMST problems
(notably the GA known as PEA-I). RGH-I in [21], denoted
by RGH1 in this paper, iteratively improves the solution
found with RGH by using level change mutation. It was
shown in [21] that RGH-I has better results than all
previously-known heuristics for solving the BDMST
problem. PEA-I employs a permutation-coded representation
for individuals. It uses uniform order-based crossover and
swap mutation as its genetic operators. PEA-I was shown to
be the best GA of all those tried, on the BDMST problem
instances used in [21]. In this paper, we implement another
version of RGH, called RGH2, RGH2 is similar to RGH,
except that when a new vertex is added to the expanding
spanning tree, it is chosen at random, and connected to a

randomly chosen vertex that is already in the spanning tree.  
Almost all genetic algorithms for solving the BDMST

problem discussed above strongly depend on their particular
heuristics, in that the heuristics were usually used to
initialize GA populations and played an important role in
the design of genetic operators (especially for mutation
operators). However, it has been suggested in the literature
that the behaviours of different heuristics vary over different
classes of problem instances [21]. Therefore, our research
approach is to build a new multiple-population GA, to
employ different initial biases by using different heuristics
for initialization, and to hybridize the individuals from these
populations to promote the exploratory capacity of the GA.
In the next section, we will outline such a GA.   

III. PROPOSED HYBRID GA
Genetic algorithms (GAs) have proven to be effective tools

for solving approximately NP-hard problems. Several GAs
have been proposed for BDMST problems, notably, RJ-
ESEA [12], JR-PEA [13], J-GPEA [14], and PEA-I [21] –
(the names we used here are borrowed from [21] and each of
the GAs has two versions, namely steady-state and
generational). The above GAs differ from each other in
individual representation and genetic operators, but have a
common property that they use a single population based on
a single heuristic. Our new hybrid GA employs multiple
populations and is described as follows. 

A. Individual Representations 
The problem of spanning tree representation has been

studied extensively in the literature. [4, 9] and specially [19]
contain substantial discussion and analysis of different
representations from theoretical and practical perspectives.
For the BDMST problem, three representations have been
used for representing the spanning trees, namely, edge-set-
coded [11, 12], permutation coded [13, 21], and random key
representations [14]. In this paper, our new hybrid genetic
algorithm (HGA) uses edge-set-coded representation as
suggested in [11] for individuals. Implementing HGA on
other spanning tree representations will be one of our near-
future investigations.        

B. HGA Population Structure
HGA uses m+1 populations consisting of m populations,

one for each individual GA, and a final population, for
solving the BDMST problem. In our paper, m = 4 and the
populations are called GA1, GA2, GA3, GA4 and GA_final. 

C.Initialization
GA1, GA2, GA3, and GA4 are initialized by using four

different heuristics, in our experiments they are RGH,
RGH1, RGH2, and OTTC. Given their different algorithm
bias in and operational behaviours as reported in the
literatures [21] and found in our experiments, it is hoped that
they will provide the sufficient diversity for all individual
GA (GA1-GA4) at the beginning. For GA_final, the
initialization is done by uniformly randomly copying
individuals from the individual GA (GA1-GA4) initial



populations.   

D.Evolutionary Process
D.1 Selection

The process of selecting individuals in each individual GA
(GA1-GA4), and in GA_final, to be included in the mating
pools for the next generation, is similar to the selection
process of a typical GA in the literature (i.e. any typical
selection mechanism such as fitness-proportionate or
tournament-based could be used). However selection in
HGA has two stages. In the first, individuals from individual
GA are selected to migrate into the GA_final mating pool.
Our primary aim in this migration is to make GA_final a
more competitive population, with good and diverse
individuals, selected from different individual GA
populations with different initial biases. The selection
mechanism for GA_final at generation t is as follows.     
The proportions of immigrants from each individual GA to

the GA_final at a generation is selected based on the
comparative average performance of this individual GA. The
exact formula for computing the proportion of immigrants
from GAi to GA_final at generation t is:      

fi
t =  e

−
diff (i , t )

T  

with diff(i, t) above defined as:
diff(i,t) = meani

t – min{minj
t, min_finalt-1}, with 1≤j≤n

where: 
minj

t : is the minimal (best) fitness of the population of
GAj at generation t.
meani

t: is the average fitness of the population of GAi at
generation t.

min_finalt-1: is the minimal (best) fitness of GA_final at
generation t-1.

T is a parameter which plays a similar roles to the pseudo-
temperature in simulated annealing, and was set to C×t,
where C is a normalized constant factor (to ensure that fi

t is
in [0,1]). As the generations increase, the difference between
GAi and the others is expected to decrease (as they are
assumed to converge), and therefore will have less impact on
determining the proportion of its migrants to GA_final.
Finally, the number of individuals from GAi to migrate to
GA_final is 

num_selecti
t  = Pop_Sizei * fi

t

(Pop_Sizei is the population size of GAi) .

In our current implementation of HGA, the actual
individuals selected from the GAi population are the
num_selecti

t best individuals (that is, trucation selection).
Other selection strategies will be considered in future
studies. 

After selection, the migrants merge with GA_final
individuals from generation t-1, and the best Pop_Size
(population size of GA_final) individuals will form the
mating pool for GA_final generation t. They are
subsequently randomly selected and combined or modified
using genetic operators (crossover and mutation). Procedure
Migration(t) below summarizes the above migration process: 

Procedure Migration(t)
For i = 1 to m Do
 diff(i,t) = meani

t – min{minj
t, min_finalt-1}

    fi
t =  e

−
diff (i , t )

T
 ;

  num_selecti
t = Pop_sizei*fi

t(dif);
  For j = 1 to num_selecti

t Do
Select(GAi[j]);

   Endfor
 Endfor
Merge( GA_final, GAi selected);
Return (Best Pop_size(GA_final) trees);

E. Genetic Operators
We use the genetic operators proposed in [12]. They

consist of a specialized crossover operator derived from
RGH, and four specialized mutation operators namely:
center exchange, level exchange, edge exchange, and subtree
optimization mutation. The full detailed implementations
were given in [12, 18]. The application of genetic operators
to each GA population is homogeneous, in the sense that all
use the same set of genetic operators with the same
application rate. Future research will investigate less
homogenous strategies, in which each GA population could
use different operators and/or with different application
rates.  

IV. EXPERIMENTS

A. Problem Instances
The problem instances used in our experiments are the

BDMST benchmark problem instances used in [11, 12, 21].
They consist of two sets of Euclidean and Non-Euclidean
instances. Euclidean instances are (complete) random graphs
in the unit square. All can be downloaded from
http://www.sc.snu.ac.kr/~xuan/BDMST.zip. We chose the
first 5 instances of each problem size (number of vertices) n
= 50, 100, 250, 500, and 1000, the bounds for diameters
being 5, 10, 15, 20, 25 correspondingly (making up 25
problem instances in total). 

For Non-Euclidean problem instances, five instances for
each value of n= 100, 250, 500, 1000 were chosen. All of
these instances are complete graphs with weights randomly
generated in [0.01, 0.99]. The diameter bounds were set to
10, 15, 20, 25 respectively (making 20 problem instances in
total).     

B. Experiment Setup
We set up two sets of experiments. In the first, we

compare the performance of HGA with RJ-ESEA and also
PEA-I. We note that RJ-ESEA uses the same individual
representation and operators as the individual and final GAs
in HGA; our GA1 uses RGH to create the initial population,
so that it is essentially the same as RJ-ESEA, so we use the
names GA1 and RJ-ESEA interchangeably. We chose PEA-I



because it was reported in [21] as the best of several GAs for
the benchmark problem instances that we use in our
experiments. We note that PEA-I uses different individual
representation (permutation based) and genetic operators
from ours. In the second set of experiments, we run each
individual GA (GA1-GA4) independently and compare with
HGA, to fully confirm whether the use of multiple
populations with migrations actually made a difference.
 

C.System Settings
For HGA, the population sizes for GA1, GA2, GA3, GA4

and GA_final was 100, the number of generations was 200,
giving 100000 as the total maximal number of fitness
evaluations, i.e. the same as for RJ-ESEA and PEA-I in [12,
21]. GA1, GA2, GA3, and GA4 were initialized with RGH,
RGH1, OTTC, RGH2. All GAs populations used tournament
selection of size 3 and crossover rate of 0.5. The mutation
rates for center level change, center move, greedy edge
mutation, and subtree optimize mutation were 0.7, 0.2, 0.8,
and 0.5 respectively. In the second set of experiments, the
population sizes of individual and independent GA1, GA2,
GA3, GA4 population were increased to 500 so as to level out
the number of fitness evaluation with HGA.

Each system was allocated 50 runs for each problem
instance (so that the total number of runs in our experiments
was 11250 runs), and all the programs were run on a
machine with Pentium 4 Centrino 3.06 GHz CPU using
512MB RAM.

V. RESULTS AND DISCUSSIONS

Tables 1-4 show the results of our experiments for all
systems on the chosen problem instances. Table 1 shows the
results of RJ-ESEA, PEA-I, and HGA on the 25 Euclidean
problem instances in the first set of experiments. The results
of PEA-I was taken from [21]. Table 2 depicts the results of
independent individual GA (GA1-4) and HGA on the same
25 Euclidean problem instances. It is noted that GA1 results
was actually RJ-ESEA results as the two systems coincide.
Tables 3 and 4 have similar meanings as tables 1 and 2
except that they show the results of the corresponding
systems on Non-Euclidean instances. For tables 2 and 4, the
columns of instance number have been omitted to fit the
available space.     

From the results in table 1, it can be seen that, on the
Euclidean instances, HGA outperformed RJ-ESEA and PEA-
I on almost all instances (rows in boldface and/or italic). In
some cases, HGA outperformed both RJ-ESEA and PEA-I
(rows in bold and italic face) statistically significantly (using
test of the difference in mean between two binomial
variables with α = 0.05). In some other cases (rows in
boldface), HGA found statistically significantly better
solutions than either PEA-I or RJ-ESEA. By studying those
rows, it can be seen that, when n is small, HGA statistically
significantly outperformed PEA-I while its performance was
still as good or better than RJ-ESEA (but not statistically
significant). The situation is reversed when n is large (n>50),
HGA was significantly better than RJ-ESEA, but only
marginally better than PEA-I (except for a few cases where

HGA significantly outperformed both other systems).
Table 2 shows that the use of multiple populations and

migration in HGA was really useful (at least on those
problem instances). HGA significantly outperformed each
independent GA most of the time (rows in boldface) (again
using test of the difference in mean between two binomial
variables with α = 0.05).

By contrast with the results on Euclidean instances, the
results on non-Euclidean problem instances in table 3 do not
give a clear margin of superiority of HGA over RJ-ESEA
and PEA-I. On almost all problem instances, HGA was
better, but not significantly, than the other two systems; in
combination, these results suggest that there is an effect from
the hybridization, but it is quite weak. This only marginally
better performance could be explained by the results shown
in table 4, where it appears that the use of multiple
population and migration did not help HGA to perform
better than the independent GAs (GA1-4).  

VI. CONCLUSION

In this paper, we proposed a new hybrid genetic algorithm
(HGA) for solving the BDMST problem. HGA employs
multiple populations, which are initialized by using different
well-known heuristics. The individuals from each population
are then migrated to a final population called GA_final for
merging and competing to breed. We have tested our new
GA on a number of BDMST benchmark problem instances.
The experimental results showed that on Euclidean
problems, HGA outperformed the current best GAs, namely
RJ-ESEA and PEA-I reported in [12, 21]; however it
performed only very marginally better on non-Euclidean
problems.

It is difficult to explain the differences between Euclidean
and non-Euclidean problems. 

In future work, we are planning to make a serious
investigation into the course of the ineffectiveness of our
HGA multi-population usage and migration strategies on
solving Non-Euclidean problem instances. Other migration
strategies and use of genetic operators for each individual
GA population (such as the non-homogenous use of genetic
operators) will be studied. We will also try our HGA
algorithm on other tree representation and genetic operator
sets such as those used in PEA-I. Moreover, using multi-
parent crossover as in [20] for combining individuals in
GA_final is also currently under our investigation.    
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TABLE 1. RESULTS OF RJ-ESEA, PEA-I, and  HGA ON 25 EUCLIDEAN INSTANCES.

Instance RJ-ESEA PEA-I HGA
n k Number Best Avg SD Best Avg SD Best Avg SD
50 5 1 7.60 7.93 0.22 7.60 7.64 0.10 7.60 7.64 0.06
50 5 2 7.68 7.87 0.14 7.75 7.75 0.01 7.68 7.75 0.01
50 5 3 7.24 7.51 0.15 7.25 7.27 0.05 7.24 7.27 0.04
50 5 4 6.59 6.75 0.15 6.62 6.63 0.02 6.59 6.63 0.02
50 5 5 7.32 7.49 0.09 7.39 7.42 0.04 7.32 7.42 0.03
100 10 1 8.00 8.30 0.12 7.76 7.82 0.03 7.62 7.80 0.02
100 10 2 8.10 8.41 0.16 7.85 7.89 0.04 7.71 7.80 0.04
100 10 3 8.22 8.61 0.19 7.90 7.97 0.04 7.73 7.82 0.03
100 10 4 8.27 8.57 0.17 7.98 8.04 0.03 7.72 7.94 0.03
100 10 5 8.48 8.72 0.15 8.16 8.21 0.03 7.92 8.02 0.02
250 15 1 12.93 13.36 0.19 12.24 12.36 0.05 12.22 12.32 0.05
250 15 2 12.86 13.25 0.20 12.04 12.13 0.04 12.00 12.08 0.05
250 15 3 12.69 13.6 0.20 12.03 12.11 0.05 12.00 12.06 0.05
250 15 4 13.22 13.65 0.19 12.42 12.57 0.05 12.40 12.47 0.03
250 15 5 13.02 13.40 0.19 12.28 12.39 0.05 12.25 12.30 0.05
500 20 1 18.33 18.77 0.29 16.96 17.13 0.06 16.93 17.01 0.04
500 20 2 18.17 18.60 0.19 16.81 16.99 0.07 16.78 16.85 0.05
500 20 3 18.33 18.76 0.28 16.89 17.04 0.06 16.83 16.89 0.03
500 20 4 18.32 18.74 0.18 16.96 17.10 0.06 16.84 16.94 0.05
500 20 5 17.80 18.40 0.28 16.58 16.72 0.06 16.47 16.55 0.06
1000 25 1 26.13 26.72 0.31 23.97 24.19 0.10 23.92 24.20 0.12
1000 25 2 26.14 26.58 0.27 23.70 23.98 0.13 23.65 24.09 0.13
1000 25 3 25.47 26.21 0.29 23.61 23.76 0.08 23.55 23.70 0.08
1000 25 4 26.13 26.65 0.22 24.04 24.16 0.07 24.04 24.16 0.07
1000 25 5 25.91 26.29 0.27 23.75 23.90 0.07 23.75 23.89 0.07

TABLE 2. RESULTS OF GA1, GA2, GA3, GA4, AND HGA ON 25 EUCLIDEAN INSTANCES

Instance GA1 GA2 GA3 GA4 HGA
n k Best Avg SD Best Avg SD Best Avg SD Best Avg SD Best Avg SD

50 5 7.60 7.93 0.22 7.60 7.85 0.14 7.60 7.93 0.22 7.60 8.12 0.47 7.60 7.64 0.06
50 5 7.68 7.87 0.14 7.68 7.82 0.11 7.68 7.87 0.14 7.68 8.13 0.37 7.68 7.75 0.01
50 5 7.24 7.51 0.15 7.24 7.46 0.10 7.24 7.51 0.15 7.24 7.99 0.36 7.24 7.27 0.04
50 5 6.59 6.75 0.15 6.59 6.70 0.06 6.59 6.75 0.15 6.59 7.32 0.35 6.59 6.63 0.02
50 5 7.32 7.49 0.09 7.32 7.45 0.05 7.32 7.49 0.09 7.32 8.12 0.34 7.32 7.42 0.03
100 10 8.00 8.30 0.12 7.90 8.14 0.13 7.92 8.14 0.05 7.90 8.63 0.36 7.62 7.80 0.02
100 10 8.10 8.41 0.16 7.98 8.11 0.12 7.98 8.45 0.23 8.00 8.76 0.33 7.71 7.80 0.04
100 10 8.22 8.61 0.19 8.00 8.34 0.11 8.02 8.67 0.23 8.03 8.82 0.36 7.73 7.82 0.03
100 10 8.27 8.57 0.17 8.10 8.66 0.21 8.10 8.66 0.21 8.12 9.12 0.39 7.72 7.94 0.03
100 10 8.48 8.72 0.15 8.11 8.48 0.19 8.13 8.78 0.33 8.16 9.21 0.36 7.92 8.02 0.02
250 15 12.93 13.36 0.19 12.67 13.14 0.24 12.79 13.56 0.33 12.73 13.81 0.45 12.22 12.32 0.05
250 15 12.86 13.25 0.20 12.50 13.00 0.17 12.55 13.01 0.23 12.29 13.79 0.44 12.00 12.08 0.05
250 15 12.69 13.60 0.20 12.43 12.87 0.14 12.48 13.01 0.25 12.47 13.43 0.47 12.00 12.06 0.05
250 15 13.22 13.65 0.19 13.01 13.59 0.17 13.00 13.78 0.21 13.05 13.99 0.38 12.40 12.47 0.03
250 15 13.02 13.40 0.19 13.00 13.56 0.17 12.98 13.89 0.25 13.02 13.99 0.33 12.25 12.30 0.05
500 20 18.33 18.77 0.29 17.70 18.95 0.17 17.74 18.78 0.34 17.63 19.01 0.37 16.93 17.01 0.04
500 20 18.17 18.60 0.19 17.75 18.74 0.34 17.70 18.72 0.35 17.60 18.89 0.41 16.78 16.85 0.05
500 20 18.33 18.76 0.28 17.88 18.76 0.35 17.92 18.71 0.35 17.88 18.82 0.36 16.83 16.89 0.03
500 20 18.32 18.74 0.18 17.83 18.56 0.27 17.85 18.68 0.32 17.88 18.89 0.32 16.84 16.94 0.05
500 20 17.80 18.40 0.28 17.54 18.32 0.26 17.67 18.68 0.37 17.64 18.81 0.42 16.47 16.55 0.06
1000 25 26.13 26.72 0.31 24.78 25.02 0.18 24.99 25.97 0.31 25.02 26.45 0.32 23.92 24.20 0.12
1000 25 26.14 26.58 0.27 24.98 25.34 0.18 25.11 25.79 0.22 25.23 26.34 0.41 23.65 24.09 0.13
1000 25 25.47 26.21 0.29 25.11 25.49 0.19 25.12 25.98 0.21 25.10 26.23 0.32 23.55 23.70 0.08
1000 25 26.13 26.65 0.22 25.57 26.12 0.18 25.63 26.45 0.31 25.89 26.99 0.33 24.04 24.16 0.07
1000 25 25.91 26.29 0.27 25.15 25.78 0.16 25.11 26.00 0.31 25.34 28.12 0.40 23.75 23.89 0.07



TABLE 3. RESULTS OF RJ-ESEA, PEA_I, AND HGA ON 20 NON-EUCLIDEAN BDMST PROBLEM INSTANCES.
 

Instance RJ-ESEA PEA-I HGA
n K Number Best Avg SD Best Avg SD Best Avg SD

100 10 1 2.33 2.49 0.07 2.32 2.38 0.03 2.32 2.38 0.03
100 10 2 2.20 2.45 0.06 2.20 2.22 0.02 2.18 2.22 0.02
100 10 3 2.42 2.78 0.07 2.40 2.43 0.04 2.40 2.41 0.04
100 10 4 2.19 2.59 0.06 2.18 2.23 0.02 2.16 2.21 0.04
100 10 5 2.40 2.79 0.06 2.35 2.42 0.04 2.34 2.40 0.03
250 15 1 3.78 3.99 0.11 3.73 3.79 0.03 3.72 3.76 0.03
250 15 2 3.80 3.99 0.08 3.79 3.83 0.03 3.77 3.82 0.03
250 15 3 3.69 3.99 0.08 3.69 3.76 0.03 3.69 3.77 0.03
250 15 4 3.78 4.02 0.08 3.76 3.82 0.03 3.75 3.80 0.03
250 15 5 3.98 4.44 0.06 3.88 3.95 0.04 3.87 3.96 0.04
500 20 1 6.26 6.46 0.07 6.24 6.29 0.03 6.23 6.27 0.02
500 20 2 6.30 6.60 0.06 6.30 6.36 0.03 6.28 6.35 0.03
500 20 3 6.17 6.37 0.06 6.16 6.22 0.03 6.16 6.24 0.03
500 20 4 6.25 6.55 0.06 6.25 6.32 0.03 6.23 6.32 0.04
500 20 5 6.25 6.54 0.06 6.25 6.29 0.04 6.22 6.27 0.04
1000 25 1 11.32 11.63 0.06 11.26 11.31 0.03 11.25 11.30 0.03
1000 25 2 11.28 11.52 0.05 11.30 11.34 0.03 11.27 11.32 0.03
1000 25 3 11.29 11.49 0.04 11.30 11.35 0.03 11.28 11.34 0.04
1000 25 4 11.23 11.45 0.05 11.22 11.26 0.03 11.22 11.25 0.03
1000 25 5 11.39 11.69 0.04 11.39 11.42 0.03 11.37 11.41 0.03

TABLE 4. RÉSULTS OF GA1, GA2, GA3, GA4, AND HGA ON 20 NON-EUCLIDEAN BDMST PROBLEM INSTANCES.

Instance GA1 GA2 GA3 GA4 HGA
n k Best Avg SD Best Avg SD Best Avg SD Best Avg SD Best Avg SD

100 10 2.33 2.49 0.07 2.33 2.45 0.07 2.33 2.59 0.09 2.33 2.79 0.23 2.32 2.38 0.03
100 10 2.20 2.45 0.06 2.20 2.42 0.06 2.22 2.60 0.09 2.23 2.78 0.24 2.18 2.22 0.02
100 10 2.42 2.78 0.07 2.41 2.66 0.06 2.42 2.90 0.11 2.42 3.11 0.11 2.40 2.41 0.04
100 10 2.19 2.59 0.06 2.18 2.55 0.06 2.19 2.79 0.07 2.19 2.88 0.09 2.16 2.21 0.04
100 10 2.40 2.79 0.06 2.39 2.69 0.06 2.40 3.01 0.08 2.40 3.23 0.12 2.34 2.40 0.03
250 15 3.78 3.99 0.11 3.77 3.94 0.06 3.77 4.02 0.08 3.79 4.15 0.14 3.72 3.76 0.03
250 15 3.80 3.99 0.08 3.79 3.87 0.06 3.79 4.01 0.08 3.80 4.23 0.14 3.77 3.82 0.03
250 15 3.69 3.99 0.08 3.69 3.98 0.06 3.69 4.15 0.12 3.70 4.35 0.16 3.69 3.77 0.03
250 15 3.78 4.02 0.08 3.78 4.03 0.07 3.79 4.27 0.17 3.79 4.45 0.25 3.75 3.80 0.03
250 15 3.98 4.44 0.06 3.95 4.29 0.05 3.96 4.69 0.06 3.97 4.48 0.07 3.87 3.96 0.04
500 20 6.26 6.46 0.07 6.25 6.62 0.05 6.25 6.78 0.07 6.25 6.98 0.12 6.23 6.27 0.02
500 20 6.30 6.60 0.06 6.30 6.54 0.03 6.31 6.75 0.07 6.31 6.96 0.11 6.28 6.35 0.03
500 20 6.17 6.37 0.06 6.16 6.34 0.05 6.16 6.72 0.07 6.17 6.78 0.12 6.16 6.24 0.03
500 20 6.25 6.55 0.06 6.25 6.50 0.05 6.25 6.80 0.07 6.26 6.98 0.10 6.23 6.32 0.04
500 20 6.25 6.54 0.06 6.24 6.52 0.05 6.24 6.83 0.07 6.25 6.93 0.10 6.22 6.27 0.04
1000 25 11.32 11.63 0.06 11.31 11.66 0.06 11.31 11.99 0.07 11.32 12.12 0.12 11.25 11.30 0.03
1000 25 11.28 11.52 0.05 11.28 11.53 0.06 11.29 11.98 0.07 11.30 12.01 0.09 11.27 11.32 0.03
1000 25 11.29 11.49 0.04 11.30 11.56 0.04 11.30 11.98 0.07 11.29 12.00 0.09 11.28 11.34 0.04
1000 25 11.23 11.45 0.05 11.22 11.55 0.06 11.22 11.78 0.07 11.22 11.98 0.09 11.22 11.25 0.03
1000 25 11.39 11.69 0.04 11.38 11.68 0.04 11.38 11.98 0.07 11.38 12.02 0.08 11.37 11.41 0.03

Number: the number of instance
K: bounded diameter
Best: Min weight of the best trees obtained by the algorithm over the runs.
Avg: Mean weight of the best tree obtained by the algorithm over the runs.
SD: Standard deviation of Best 


