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Abstract—In this paper, we investigate the impact of a lay- Layered learning (LL) is a machine learning technique that
ered learning approach with incremental sampling on Genet tries to decompose the learning task into subtasks, and then
Programming (GP). The new system, called GPLL, is tested o5y each subtask in layered (staged) fashion [19], [18].
and compared. with standard GP on twelve symbolic regression Although LL has been applied to GP [17], [6], it has generally
problems. While GPLL does not differ from standard GP on ] ) v 1P
univariate target functions, it has better training efficiency on 0€en used with a different purpose. Most of the related works
problems with bivariate targets. This indicates the potenial so far have tried to combine LL with GP in learning by
usefulness of layered learning with incremental sampling i overfitting the training set part by part (for each subtask
improving the efficiency of GP evolutionary leaming. of the learning problem) in order to find exact solutions to

problems in multi-robotic agent controls [17] and learning
|. INTRODUCTION Boolean functions [6]. Zhang and Joung’s [2] in particular

Genetic Programming (GP), since its introduction and detudied combining LL with incremental sampling to improve
velopment by Koza, has been seen as a potential machthe learning efficiency of GP systems. Despite the strong
learning method [13]. Its main objective is to discover, b{heoretical foundation for this combination [16] (at ledst
evolutionary means, relations between input and output d&AC learners), there does not appear to have been any pseviou
in the form of a function or program. GP has been applid@llow-up. In particular, to the best of our knowledge, therk
successfully to numerous real world problems, of which marigported here is the first investigation of the impact of tage
are learning tasks [20]. Despite the initial successes, @arning on GP's generalization capacity or learningfgai
researchers and practitioners, in the early days, seldadh pefficiency.
attention to the generalization capability of GP. They fexul In this paper, we present our first investigation on the
more on how to use GP to fit the given data set by trying tombination of layered learning and incremental samplorg f
learn the exact solution/relation (which is often impoksin  training GP. The rest of the paper is organized as follows.
real world situations). In the next section, related work on GP generalization ssue

In the field of machine learning (ML) [21], however,layered learning, and the theoretical motivation for cogpl
generalization has been seen as one of the most desirdbteemental sampling with layered learning is presented- S
properties of any learning method. To generalize effelytivetion Ill outlines our new method for training GP. The exper-
any learning machine should avoid overfitting the trainingnental settings are given in sections IV. Section V present
data. Recently, GP generalization has attracted moretiattenthe experimental results with discussion. The paper caolesiu
from GP researchers, with the number of related publicatiowith section VI, where some future work is highlighted.
increasing [7], [3], [8], [15], [9]. [4], [7], [14], [12]. In
addition, there have been a number of publications on apglyi
traditional ML techniques and practices to the learning-pro
cesses of GP, in order to improve its generalization caabil
Successful examples of this work have been presented in [2],
[3], [8]. This section gives a brief overview of the literature on the

o , _ generalization capability of GP, and on the use of increalent

This is a self-archived copy of the accepted paper, selfhaed un- . . L L
der IEEE policy. The authoritative, published version cam found at training-set size for GP, prOVIdlng the motivation for therk
http://ieeexplore.ieee.org/xpls/alzl.jsp?arnumber=5949958&tag=1 in this paper.

Il. RELATED WORKS



A. Genetic Programming Generalization combining Linear Scaling with the No Same Mate strat-

Although achieving high generalization capability is th€9Y [14]-
main objective any learning machine [21], it was not sefipus Vanneschi and Gustafson [10] improved GP generalization
considered in the field of GP for a long time. Before Kushchifirough a crossover-based similarity measure. They keisp a |
published his seminal paper on the generalization ability gf over-fitted individuals, and try to prevent similar initiuals
GP [22], there was limited work in the literature dealinglwit €ntering the next generation (based on structural distance
GP generalization. In [23], Francone et al. proposed a new @fimilarity measure based oh subtree crossover). The shetho
system called Compiling GP (CGP), the authors comparir‘ﬂ%’?‘S tested on a real-life drug discovery regression prohiet
its generalization ability with that of other machine léagn Showed improved generalization ability. In [11], Vanndseh
techniques. They showed that the generalization abilig@pP @l- proposed a method to quantify/detect over-fitting dyitire
is comparable with a number of more traditional machirféP learning process.
learning approaches. The impact of the extensive use ofNguyen Q U et al. [26] showed that semantic information
the mutation operator on CGP’s ability to generalize weguld be used to guide the crossover operator of GP in
investigated; the results showed positive effects. reducing the code bloat, improving its generalization téjtg
Zhang and Miihlenbein [24] proposed a method to avoffll real-valued symbolic regression problems.
overfitting in GP based on the Minimum Description Length
principle, with an adaptive mechanism for balancing betweg |ayered learning

accuracy and complexity according to individual prefeeenc : . ' .
The method was shown to be robust for a wide class BfThe layered learning paradigm was first formally introduced

tasks with noi . lete data. In 8. Iba i dat y Stone and Veloso [18] as an extension and formalization of
E?S S Wi n(;)l;y ort_mco_mtp eGeP aBa. an[ J d g 'nc?ép; Teearlierwork by Asada et al. [1] and de Garis [5]. The main idea
agging and boosting 1nto (Bag and BoostGP). %? LL is to solve the learning problem in a hierarchical and

results showed that these techniques could help to imprqv i . : i
the robustness (generalization ability) of GP on the pnmlsleoogttom up fashion. The problem is decomposed into subfasks

£ di ing tri tric identiti haotic time | often as a lower order form of the original learning problem.
ot discovering trigonometric identities, chaolic time 1881, learning process is then conducted in stages (layets). A
prediction, and 6 bit multiplexer [8]. These early works &er

ood examples of the application of more traditional maghi each stage, the learning machine leams to solve a subtak, o
good pie bp . The solution for the subtask has been obtained the learning
learning techniques to the learning process of GP.

Recently, the generalization aspect of GP has deserve achine starts learning in the next stage (layer) to solee th

. . o Vefi¥k in the next level, and has access to the solutions learnt
gained more attention from researchers and practitiondfsei . : .
; . ; : : in the previous stages (layers). The principles of LL can be
field. In [25], Panait and Luke investigated the impact of six . .
. - summarized as follows [18], [19]:
common sampling methods on the robustness of GP solutions.

None of the methods dominated the others on all problems ) Direct learning of a task might be intractable.
suggesting that the impact of sampling method is dependentz) Bottqm-up and hierarchical task decomposition could be
on problem domain features. Poss'b'?‘- _ . .

Paris et al. [7] used GP as the core learning algorithm in a3) A léarning machine could exploit data to train and/or

boosting framework to trigger over-fitting; GP with boostin adapt its learning process separately at each level.
turned out to be substantially better than standard GP dm bot4) The output of learning process in one layer feeds into
the problems studied. Mahler et al. [15] tried Tarpeian wint the next layer.

on symbolic regression problems and tested the side efiécts Early work on LL mainly focused on the learning tasks
this method on the generalization accuracy of GP. The mesuift multi agent systems. In [19], Stone applied LL to the
were mixed: Tarpeian control can either increase or redugeoblem of learning skills for soccer agents in a multi-ggen
the generalization power of GP solutions depending on tegvironment. He tried three layers of learning for each agen
problem. with different learning skills (from individual skills sticas

In [3], Gagné et al. investigated two methods to improvigtercepting the ball to team skills as ball passing) to be
generalization in GP-based learning: selection of the-bst acquired. Different learning machines (methods) were tised
run individuals through three separate data sets (traimvialg accomplish the learning task at each layer [19].
idation, and test); and the application of parsimony pnessu  Gustafson and Hsu [17] proposed an LL approach to learn
to reduce the complexity of learned solutions. The resulétrategies for the keep-away soccer game, in which a team of
indicated the value of a validation set, showing increaséour players must prevent a single opposition player coming
stability of the best-of-run solutions on the test sets. into contact with the ball. They designed two layers for the

Costa and Landry [9] proposed a new GP system called tearning problem. The learning objective in the first layetd
laxed Genetic Programming (RGP) with generalization ghilimaximize the number of accurate passes, while in the second
better than traditional GP. layer it is to minimize the number of ball turnovers to the

More recently, Costelloe and Ryan [4] also investigatempposition player. Both layers used GP, and each layerdaste
the role of generalization in GP learning. They showed thatfixed number of generations. The population at the final
popular GP techniques such as Linear Scaling [12] may ordgneration of the first layer was the initial population fbe t
improve the fit on training data, not on testing/unseen datzext layer, and the fithess function switched to the next task
They proposed a method to improve GP generalization by the same time.



In [6], Jackson and Gibbons applied two approaches afhd the increase in sample size is somewhat arbitrary (). Ou
LL to GP learning on more GP traditional problem domaingpproach is more faithful to LL, with the increase in tramin
learning Boolean functions. In the first, they used two layesample size motivated by theory from [16]. The problems
of learning, with the first layer learning a subset of fithedested in [6] and [2], [27] are frp, Boolean and Multi-agent
cases of the 4-parity problem, and the second learning tthemains, while we concentrate on more traditional realedl
whole set of fithess cases. The experiments with this approaymbolic regression from the GP literature. Finally, whhe
gave disappointing results, in over-fitting to the exactisoh previous approaches to GP with LL use a fixed number of
for the problem. They then modified the approach so thgenerations as the length of each layer, we employ a differen
the first layer was used for learning a simplified version @&topping criterion, which will be described next.
the original problem (with fewer input variables) while the The learning/evolutionary process of our Layered learning
second exploited what had been learnt in the first to discov@P (GPLL) system is divided inten layers. It starts as in
exact solutions for the original problem. The results shbwetandard GP, except that only a subset of the training exasmpl
the positive effects of using LL compared to standard GP aade presented to the system. When the stopping criterion
GP with ADF. is satisfied in each layer, the next layer commences. The

population in the last generation of the previous layer bezo
C. Incremental Sampling the initial population of the next layer, and the trainingngde
set is incremented with newly added samples (drawn under

In [16], Mugg!eton Fhe_oretically analyzed. the com.binationﬂqe same distribution from the problem training sampleg). A
of layered learning with incremental sampling, derivingige the ith layer, the size of the training set (fitness cases) is
eral lower-bound results for Probably Approximately Cotre HQ '

PAC) | ina. The | . beains by taki | ;| = k|D;_1|, wherek a predefined constant (that is, the
( ) learning. The leaming Process begins by taking alsm ining cases increase exponentially). The process esated
sample from a stream of available training data, and use

Ufttil the required number of layers (3 in this paper) have

fo construct an approximately correct theary (using any P'Algéen completed or some stopping criteria are met. Figure 1
learning machine). A second approximately correct thesryéummarizes the GPLL learning process
then constructed based on the error of the first theory, wsing '

new sample set which is a superset of the first. Further Iay?_rs . )

. . . . ig. 1. Incremental Sampling Layered Learning Frameworketaon a
of correcting 'Fheones are then added using successivelgna pierarchical, Bottom-up Approach
samples, until a predefined level of accuracy of the overall
theory is achieved. Muggleton showed that if the sample size
increases linearly (with respect to the VC dimension of the ik N, _

. . . ™, incremental
hypothesis space), the lower bound for generalizationrerro I sampling
will exponentially decrease over the learning layers. Magg Layer2 2| rayerea
ton suggested that the use of LL and incremental sampling M learning
might not be subject to results on hardness of learning that
apply to PAC learning by machines with a single layer of Layerl |
learning.

In [27], Zhang proposed a Bayesian framework for GP

learning. From Bayesian theary, he suggested that thejngﬁ‘inthe old population by the applications of selection, crusso

Sﬁt for GlP Ie;rnir;%shgllgd iq;:r:egse duringt:; tlh?j I?amirri]glt.rtg and mutation operators (generational transition), a stgpp
phase. In [2], [27], with incremental data INNertanceiqion js tested. It checks whether there is overfittimghie

(IDD) was proposeq, arfld apghe;d to the tleslk dc_>f _evolymgew population. If overfitting has been detectedfosucces-
cooperation strategies for robotic agents. istinges sive generations (i.e. the learning is no longer produjtibe

two populations: program population and data IOOpu"rmofé'arning layer is ended. Figure 2 depicts this process.
Both the program and its data concurrently evolve toward anOverfitting is estimated as proposed in Vanneschi et al.[11]

optimal combination. The size of the training set used in thﬁ1e detail of the method is presented in algorithm 1. In the

experiments was increased by a seemingly arbitrary inamarr.“f?llgorithm, bup is "best valid point” and denotes the best

of 6 at each generation. In the results, IDI's generalizauql ;

Layer3

At each layer, when the new population is created from

the training time was significantly shorter. at the beginning of a run) where the best individual on the

training set has higher accuracy on the validation set than t
Ill. PROPOSEDMETHOD training set.tbtp stands for “training at best valid point” —
Our proposed training method for GP is motivated by thiee. the training fitness of the individual that has validati

theoretical study of layered learning in [16]. It resemblefitness equal tdtp. Training Fit(g) is a function that returns
Jackson and Gibbons' first approach [6] and aspects of Zhahg best training fithness in the population at generation g.
and Joung [2], [27] but differs from them in a number of ways/al_Fit(g) returns the validation fithess of the best individual
While [6] focuses on training set accuracy, we emphasize @R the training set at generation g. In this paper, we haveemad

generalization. The learning process in [2], [27] is a splecia further simplification, in that we ignore the absolute ealu

case of LL, in which the length of each layer is one generatioof over fit(g), just noting whether it is positiv. The stopping



Fig. 2. GP Evolution of each layer

Algorithm 1: Calculation of the Degree of Over-fitting at

each Generation. Population Size 500
over fit(0)=0; Maximum generation| 150
— ’ Tournament size 3

bup = Val_Fit(0);
tbtp = Training Fit(0);

All runs were conducted on a Compaq Presario CQ3414L

computer with Intel Core i3-550 Processor (4M Cache,
Old population — 3.20GHz) running on Ubuntu Linux operating system.
i _ 4 3 2
New populstion Fi(z) = 2" 42" +z2"+z Q)
Fy(z) = 2°—2>—z—1 (2)
v F3(z) = arcsinz (3)
[ k. na Fy(x) = Vax (4)
L F5(x) = sin(27x) (5)
X Yes Fs(x) = cos(3x) (6)
S Eucomssrie panara g na Fr(z,y) = aY (7
T Rey) = ay+sm(@-1y-1) (@)
WLoyes 2
I SoE I Fo(w,y) = at=a’+ 5 —y 9)
Eotanext layer Fip(z,y) = 6sin(x)cos(y) (10)
8
Fi(z,y) = T2 1) (11)
3 3
criterion for an layer in GPLL is satisfied if it has been dételc Fia(z,y) = r iy y—x (12)
as overfitting inn successive generations, wheré a tunable 5 2
parameter.
TABLE |

PARAMETER SETTINGS FOR THEGENETIC PROGRAMMING SYSTEM

Crossover probability| 0.9
Mutation probability | 0.05

foreach generationg > 0 do InitiaIdMa>r<] depth 6
i ini i i Max deptl 15
If| Tgavg:nfﬂ_(g;t(g){ VaI_F|t(g) then Non-terminals +, -, *, | (protected version)
L N2 , sin, cos, exp, log

else if Val_Fit(g)< bvp then (protected version)
over fit(g) = 0; Number of runs 100
bup = Val_Fit(g); Standardized fitness | mean absolute error
tbtp = Training Fit(g); Elitism

else
over fit(g)
=|Training_Fit(g) — Val_Fit(g)| — |tbtp — bup); V. RESULTS AND DISCUSSIONS

For each run of GPLL and GPM, we recorded the general-
ization (test set) error (GE) of the best individual of the,ru
the size of that best individual, the total run time, and the

IV. EXPERIMENTAL SETTINGS first generation where the best individual was discovereal. W

To test the impact of layered learning and incrementabnducted three sets of GPLL experiments, witfthe number
sampling on the learning efficiency of GP, we tested GPL&f generations required before detection of over-fittirgf)te
and a standard GP system (GPM) on twelve symbolic r8; 6 and 9. Tables 3 and 4 present these results fer3, 9,
gression problems. These problems have been widely usedasraged over 100 runs, and with standard deviations). We
benchmarks for testing the generalization performance®f @mittedn = 6 results as being intermediate in nature between
systems. Among these twelve, the target learning functioti&® other two sets.
in six problems are univariate functiong ( R — R ), To test the significance of the difference in generalization
with the remaining six being bivariatef (: R? — R). error between GPLL and GPM, we used a two-tailed pairwise
Their mathematical formulae are given in equations 1 to 12test with confidence level of 0.9% (= 0.05); the p-values
The parameter settings are given in Table I. We emphasg showrt. Our null and alternative hypotheses are as follows:
that GPLL uses the same algorithm and settings (even, thg p _ the average test-set error of GPLL and GPM are
same initial random seed) as GPM, except that in the former, ha same”.
the training set (fitness cases) increases at each of the thre, H, = "GPLL and GPM have different test-set errors”.
learning layers. Table Il shows how the training, validatio
and test data sets were formed in our experiments. 1p-values shown as 0.0000 are actually numbers less thaB@s00



TABLE Il
DATA SETS FOR THE TEST FUNCTIONS

RANGES ARE DENOTED USING START:STEP.STOF NOTATION WHEN THE SET IS CREATED USING REGULAR INTERVALS
THE NOTATION [MIN, MAX ] DEFINES RANDOM (UNIFORM) SAMPLING IN THE RANGE.
THE MESH([] X []) DEFINES REGULAR SAMPLING IN TWO DIMENSIONS

Num | Function Training set (3 layers) Validation set Test set
1 J2 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-1:0.01:1]
2 s [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-1:0.01:1]
1 F3 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-1:0.01:1]
4 Fy [40,80,160] points of [0,4] 80 points of[0, 4] 200 points of [0:0.02:4]
5 F5 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-0.5:0.01:1.5]
6 Fg [40,80,160] points of [-1,1 80 points of [-1,1] 200 points of [0:0.01:2]
7 Py [100,200,400] points of [0,1]x[0,1] 150 points of[0, 1] x [0, 1] 10000 points of 0 : 0.01 : 1] x [0 : 0.01 : 1]
8 Fg 100,200,400] points of [-3,3]x[-3,3]] 150 points of[—3, 3] x [—3,3 3600 points of —3:0.1:3] x [-3:0.1:3
9 Fo 100,200,400] points of [-3,3]x[-3,3]] 150 points of[—3, 3] x [—3,3 3600 points of —3:0.1:3] x [-3:0.1:3
10 Fio 100,200,400] points of [-3,3]x[-3,3]] 150 points of[—3, 3] x [—3,3 3600 points of —3:0.1:3] x [-3:0.1:3
11 11 100,200,400] points of [-3,3]x[-3,3]] 150 points of[—3, 3] x [—3,3 3600 points of —3:0.1:3] x [-3:0.1:3
12 Fia 100,200,400] points of [-3,3]x[-3,3]] 150 points of[—3, 3] x [—3,3 3600 points of —3:0.1:3] x [-3:0.1:3
Fig. 3. Results forn =3
p-val ue testing error size of best running tinme first generation.
of GPLL GPM GPLL GPM GPLL GPM GPLL GPM
t-test
Fp 0. 0001 0.0193 0. 0105 83. 5300 128. 8900 58. 6800 73.7200 68. 3200 132. 4300
+0. 0157 +0. 0148 +45. 7352 +59. 6300 +66. 6306 +26. 4915 +44. 9280 +31. 1452
Fy 0. 0000 0. 0544 0. 0152 82. 0400 149. 3000 44.3000 88.8700 43.7700 141. 0600
+0. 0364 +0.0124 +43.1572 +54. 9895 +55. 0319 +22.1691 +27.6094 +12. 1421
Fg 0.7516 0.0163 0. 0066 73.3800 110. 5300 34.8100 49. 4400 47.9400 132. 8300
+0. 0155 +0. 0110 +38. 2054 +64. 0733 +49. 1289 +23.3841 +31. 8535 +30. 2141
Fy 0. 0000 0.0163 0.0073 73.3800 118.8700 34.8100 74.9100 47.9400 131. 3600
+0. 0155 +0. 0054 +38. 2054 +51. 2070 +49.1289 +58. 6421 +31. 8535 +28. 6302
Fy 0.0047 0. 2062 0. 1309 90. 4600 138. 8200 57.2200 84. 6300 63. 2600 137. 6400
+0. 2141 +0. 1527 +56. 2888 +53. 6998 +68. 2256 +26. 2373 +47. 2638 +18. 2942
Fg 0. 0092 0. 2055 0. 1390 101. 1100 128.5700 71.8700 77.7500 86. 2700 127. 4100
+0. 1897 +0. 1655 +51. 2398 +59. 0400 +55. 4077 +20. 8076 +45. 3576 +37.8978
Fr 0. 0000 0. 0295 0. 0196 79. 7900 117. 1300 35. 2300 159. 9300 67.1100 134. 0900
+0.0143 +0. 0105 +44.3274 +51.7673 +38. 3566 +57. 3712 +41. 0476 +30. 8296
Fg 0. 0065 0. 5680 0. 5182 24.5300 83. 4300 6. 6600 90. 1000 37.0600 110. 8600
+0. 1350 +0. 1203 +27. 4449 +72.1029 +11.1021 +83.1028 +37.3198 +59. 4218
Fg 0. 0000 2.1922 1.1590 85.7200 152. 2300 29. 4000 207. 9200 51. 0600 144. 8300
+0. 8661 +0.5723 +41. 4407 +53.5076 +23. 4676 +62. 2555 +20. 6172 +7.6410
Fi9 0. 0059 0. 6395 0. 4083 90. 6600 127.2100 42.3500 170. 9100 79.8200 133. 0900
+0. 6080 +0.5632 +48. 0581 +54. 5544 +36. 4177 +52. 5563 +39. 5258 +26.8374
F1q 0. 0000 0. 2865 0. 1536 53. 2200 128. 7900 17.2200 174. 2000 33. 2500 143. 6400
+0. 1598 +0. 1207 +31.1833 +43. 5557 +16. 4897 +50. 2991 +22. 0538 +7.7973
Fio 0. 0000 0.7524 0. 5975 74.8900 126. 8800 28. 4300 148. 9200 62. 3900 145. 7900
+0.1928 +0.1400 +40. 7126 +37. 6476 +35.3074 +41. 6099 +39. 8406 +5.3073
Fig. 4. Results forn=9
p-val ue testing error size of best running time first generation
of GPLL GPM GPLL GPM GPLL GPM GPLL GPM
t-test
Fq 0.2526 0.0135 0. 0105 108. 8300 128. 8900 92.2300 73.7200 97. 9600 132. 4300
+0. 0222 +0.0148 +52.9978 +59. 6300 +64. 7408 +26. 4915 +41.3778 +31. 1452
Fy 0. 0000 0. 0264 0. 0152 130. 1700 149. 3000 106. 6200 88.8700 93. 8400 141. 0600
+0. 0204 +0. 0124 +39. 9538 +54. 9895 +57.3514 +22.1691 +33. 0628 +12.1421
F3 0. 0105 0. 0035 0. 0066 100. 4600 110. 5300 59. 2800 49. 4400 119. 1500 132. 8300
+0. 0042 +0.0110 +51. 0513 +64.0733 +40. 7818 +23.3841 +27.5939 +30. 2141
Fy 0. 0035 0.0120 0.0073 101. 5500 118. 8700 74.0100 74.9100 80. 6300 131. 3600
+0. 0150 +0. 0054 +48. 1686 +51. 2070 +22.7119 +58. 6421 +35. 1547 +28. 6302
Fy 0.0812 0.1735 0. 1309 128.8100 138. 8200 95. 9600 84. 6300 102. 0300 137. 6400
+0.1891 +0. 1527 +55. 7530 +53. 6998 +56. 4484 +26.2373 +37.1789 +18.2942
Fg 0.3000 0. 1657 0. 1390 108. 6800 128.5700 92.1700 77.7500 110. 2700 127. 4100
+0.1948 +0. 1655 +51. 6047 +59. 0400 +51. 2228 +20. 8076 +38. 6794 +37.8978
Fr 0.2928 0.0211 0.0196 115. 3900 117. 1300 65. 0600 159. 9300 120. 9600 134. 0900
+0. 0091 +0.0105 +44.8105 +51. 7673 +29. 0895 +57.3712 +31. 5027 +30. 8296
Fg 0.5091 0.5301 0. 5182 55. 2400 83. 4300 34.3000 90. 1000 69. 2300 110. 8600
+0.1345 +0.1203 +58. 3468 +72.1029 +44.8728 +83.1028 +48.3073 +59. 4218
Fy 0.0124 1.4077 1.1590 142.7900 152. 2300 92. 7400 207. 9200 121. 4900 144. 8300
+0.5621 +0.5723 +55. 3865 +53. 5076 +40. 3319 +62. 2555 +27.5199 +7.6410
Fio 0.6389 0. 4454 0. 4083 121. 8600 127.2100 68. 8500 170. 9100 127. 2500 133. 0900
+0.5431 +0.5632 +58. 1744 +54. 5544 +35.8919 +52. 5563 +28. 6220 +26.8374
F11 0.0724 0. 1887 0. 1536 104. 2100 128. 7900 75. 2300 174. 2000 99. 5800 143. 6400
+0. 1480 +0. 1207 +44. 0409 +43. 5557 +30. 7406 +50. 2991 +37. 6915 +7.7973
Fio 0.0907 0. 6356 0. 5975 109. 5600 126. 8800 59. 2200 148. 9200 113. 1200 145. 7900
+0.1725 +0. 1400 +38. 9556 +37. 6476 +29. 4030 +41.6099 +33.8882 +5.3073




In tables 3 and 4, ifH, is accepted the p-value is printed REFERENCES

in normal face, otherwise it is printed in bold face if GPM | M. Asada, S. Noda, S. T sumid 4 K. Hosdiamosive B
P . . . . ASada, S. Noda, S. lawaratsumida an . HFos posive be-

performs better than GPLL, or in italic face if the reverse id haviour Acquisition for a Real Robot by Vision-Based Reiefment

true. Learning  In Machine Learning, vol. 23 (1998) 279-303

It can be seen from the tables that Stopping too eage??ﬂl B. Zhang and J. Joung;enetic Programr_ning with Incremental Data Iq-
heritance In Proceedings of the Genetic and Evolutionary Computatio

in each layer severely degrades the_generalization capafcit Conference, Vol. 2, pp. 1217-1224, Morgan Kaufmann, 134y 1999.
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