Software Project Effort Estimation

Using Genetic Programming

Y. Shan? R.1. McKay, C.J. Lokan, D.L. Essam
School of Computer Science, UC, University of New South Wales
ADFA | Northcott Drive, Canberra,ACT 2600, Australia
{shanyin,rim,cjl,daryl}@cs.adfa.edu.au

Abstract: Knowing the estimated cost of a software
project early in the development cycle 1s a valuable
asset for management. In this paper, an evolu-
tionary computation method, Grammar Guided
Genetic Programming (GGGP), is used to fit
models, with the aim of improving the prediction
of software development costs. Valuable results are
obtained, significantly better than those obtained
by simple linear regression. In this research,
GGGP, because of its flexibility and the ability of
incorporating background knowledge, also shows
great potential in being applied in other software
engineering modeling problems.

Keywords: genetic programming, grammar-guided
genetic programming, software engineering, soft-
ware cost estimation

I Introduction

Knowing the estimated cost of a particular software
project early in the development cycle 1s a valuable
asset. Management can use cost estimates to eval-
uate a project proposal or to manage the develop-
ment process more effectively. Therefore, the ac-
curate prediction of software development cost may
have a large economic impact: in fact, some 60% of
large projects significantly overrun their estimates
and 15% of the software projects are never com-
pleted due to the gross misestimation of develop-
ment [1]. The main driver of cost is effort. Thus cost
estimation is largely a problem of effort estimation.

A large range of metrics have been proposed for
early estimation of software project effort. A num-
ber of authors have suggested that the standard sets
have too many parameters, and a number of re-

*Corresponding author

This is a self-archived copy of the accepted paper, self-archived un- der IEEE
policy. The authoritative, published version can be found at http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=1178979&tag=1

duced sets have been suggested (large metric sets
have high collection costs, and also risk generat-
ing over-fitted models). The reductions have relied
on linear methods to eliminate metrics, and linear
models for estimating size and effort from the metric
sets, but there is a risk that some of the dependen-
cies may be non-linear. Researchers elsewhere have
begun to investigate alternative methods of devel-
oping predictive models, including fuzzy logic, neu-
ral networks, and regression trees. Exploration of
evolutionary approaches has just begun. [2, 3].

In this paper, an evolutionary approach, Gram-
mar Guided Genetic Programming (GGGP), is used
to fit nonlinear models to a dataset of past projects,
aiming to determine appropriate metric sets and im-
prove the prediction of software development effort.

In the following Section 2, GGGP is introduced
very briefly. The application of GGGP in evolution
of software development effort estimation programs
is discussed in Section 3. This includes data prepa-
ration, GP details and results obtained. The results
are analyzed in Section 4. Section 5 draws conclu-
sions.

IT Grammar Guided Genetic
Programming

One limitation of canonical Genetic Programming
(GP) [4, 5] is its requirement of closure. Tt implies
that the function set should be well defined for any
combination of arguments. Closure makes many
program structures difficult to express. To over-
come it, one early approach was Strongly Typed
Genetic Programming [6]. Subsequently, a num-
ber of authors used grammars to impose syntacti-
cal constraints [7, 8, 9, 10]. In a number of these
approaches, grammars supplied both a way to rep-

rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1178979&tag=1

resent syntactical constraints, and a way to incorpo-
rate background knowledge to guide the process. In
this paper, Grammar Guided GP is used to model
the software development effort due to the salient
advantages of GGGP. Grammars in GGGP can bias
the GP individual structure to more efficiently find
optimal or near-optimal results. Compared with
canonical GP;, GGGP has the following advantages:

e With the grammar constraint, the closure
requirement in canonical GP is removed so
that more expressive program structure can be
evolved.

e The grammar in GGGP provides a natural and
formalized way to represent background knowl-
edge. With background knowledge, the search
space 1s reduced dramatically.

e Problem related building blocks, a kind of a
priori knowledge, can be represented through
the grammar, further improving search effi-
ciency.

e During the GP search process, the grammar
itself can be evolved leading to incremental
learning.

e During the overall data mining process, the
grammar can be readily modified manually and
incrementally to reflect the user’s increasing fa-
miliarity with the problem. This turned out to
be important in this particular research effort,
permitting a rapid exploration of the problem.

IIT Evolution of Software De-
velopment Effort Estima-
tion Programs

III.1 Data preparation

The data of 423 software development projects was
collected. The projects are drawn from the public
ISBSG Data Repository '. They range from 9 to
5700 function points, and from 17 to 43000 hours.
For each project, there are 32 attributes (Table 1),
for example, software size (measured in adjusted
function points), effort (measured in hours), team
size, defects, platform, development language, team
ability, etc. These attributes capture the nature
of the project itself, the development environment

1See http://www.isbsg.org.au

and techniques used, and strengths and weaknesses
perceived in individual projects. They are divided
into four categories: numeric variables, unordered
categorical variables; ordered categorical variables
and boolean variables. Most are known early in a
project, which i1s important for estimation.

Variable Name Description

Numeric Variable:

effort Total project effort (hours)

size Project size (Function Points)
team _size Max size of the development team
duration Duration of the project (months)
defects Defects found in the 1st month

Unordered Categorical Variable:

organisation Organisation type

business Business area type

application Application type

development Development type

platform Development platform
language_type Nature of programming language
language Primary programming language

dbms Which database system used
intended_market Relationshp betwn developer&client
Ordered Categorical Variable:

year Year completed

No. of user groups for

determining requirements

user_groups

importance The importance of the project
team_ability development team skills and ability
user_involvement user involvement

manager’s ability or experience
development team’s experience

manager_ability
team_experience

requirements characteristics of requirements

techniques impact of particular development
techniques?

env_tools suitability /stability of environ./tools

Boolean Variable:

generic Written to be portable?
timeboxing Time-boxing used?
regressiontest Regression testing used?
prototyping Prototyping used?

00 Object-oriented techniques used?
mfnteam Multi-function teams used?
radjad RAD/JAD used?

classical Classical system modelling used?
case CASE tools used?

Table 1: Project attributes

These 423 records were randomly divided into
training and testing data sets, with 211 projects in
the training set and 212 in the testing set. In this
research, we used GGGP to fit a model, with the
aims of determining appropriate metric sets con-
taining the most relevant attributes, and improving

the prediction of software development effort.

II1.2 Target language

One of the important preparatory steps for GGGP
is to identify a suitable target language in which
to evolve programs. On one hand, the language
should be expressive enough to cover potential so-
lution space. On the other hand, too general a
language may ruin the efficiency of execution. Too
general a language also obviates one of the most im-
portant advantages of employing a grammar: con-
straining search space. This trade-off needs to be
carefully considered.

Two languages were used for evolving software
development effort estimation programs. The con-
text free grammars [11, 12] for these languages are
in Figure 1. Each of the grammars describes a lan-
guage, whose expressions may be viewed as mathe-
matic models with numeric return values, and may
be interpreted as predictions for software develop-
ment effort.

Grammar 1:

EXP = PREOP EXP | EXP OP EXP | NUMERIC |
CONSTVAR

BOOL = BOOL and BOOL | BOOL or BOOL | not BOOL |
EXP CP EXP | ORDERED CP ORDERED_VALUE | UN-
ORDERED in UNORDERED_VALUE_SET | BOOLVAR
PREOP = exp | sqrt | log

OP = + |- | * | / | power

CP=<|>]|=

NUMERIC = p1 |- --|p4

ORDERED = p5 |---| p13

UNORDERED = p14|--- |[p23

BOOLVAR = p 24 |--| p32

CONSTVAR = if BOOL CONSTVAR CONSTVAR |
CONSTVAR OP CONSTVAR | <ephemeral const>

Grammar 2:

EXP = PREOP EXP | EXP OP EXP | if BOOL EXP EXP
| NUMERIC | CONST

CONST = <ephemeral const>

All the other production rules same as Grammar 1

Figure 1: Grammar of the GP languages

Grammar 1 generates common mathematic ex-
pressions with all 32 independent variables and op-
erators, such as +,-,*,/ exp, etc. Note in this gram-
mar, the production for constant:

CONSTVAR = if BOOL CONSTVAR CONST-
VAR

This is designed to allow the non-numeric variables
to have an influence on the formula through altering
the values of constants. This reflects an underlying

hypothesis, that all software projects undergo simi-
lar processes, and hence may be modelled by a sim-
ilar expression, but that categorical variables such
as implementation language, platform etc may alter
the relative contribution of different components of
the model.

Grammar 2 is more general, allowing a more
complex if-then. It is a superset of Grammar 1.
The underlying assumption is that the non-numeric
variables may actually change the processes of the
software project.

Most of the details of these two grammars should
be self-explanatory. ORDERED_VALUE is a con-
stant for the corresponding ordered categorical vari-
ables. For example, for ordered categorical vari-
able user_groups, there are three different values:
one, one_to_five, over_five. Hence, for user_group,
its ORDERED_VALUE is one of these three val-
ues. UNORDERED_VALUE_SET is constant value
set for corresponding unordered categorical vari-
ables. For example, for unordered categorical vari-
able dbms, its possible values set is {access, adabas,
db2, ims, ingres, oracle, rdb, others}, which con-
tains eight elements. Therefore, for variable dbms,
its corresponding UNORDERED_VALUE_SET is
any subset of this set. <ephemeral const> is a ran-
domly generated floating-point constant between 0
and 10. GP parameters are summarized in Table 2.

Value

Parameter

Terminals, non-terminals
Fitness function
Generation type
Selection scheme

(see Fig. 1)

Mean square error
Steady state
Tournament, 3

Population 1000
Max. generations 200
Runs 5

Init. population tree size Ramped half&half
Min/max depth initial popn 6/9

Probability crossover 0.9

Probability mutation 0.1

Probability internal crossover 0.9

Probability terminal mutation 0.75

Table 2: GP parameters

Mean square error (MSE) was used as fitness
function:

N
MSE = (Z(estimated_effort—actual_effort)z)/N

i=1

where N is total number of fitness cases (423), esti-

mated_effort is the prediction from the model, and
actual_effort is the actual value.

IT1.3 Results

Using grammar 1, five GP runs were generated. On
the same training and testing data sets, five linear
and log-log equations were also derived using stan-
dard regression techniques.

Although the GP equations were found by mini-
mizing MSE, and regression also attempts to mini-
mize MSE, estimation equations are commonly as-
sessed using three other criteria. These are: RZ
the amount of variation in the dependent variable
explained by variation in the independent variables;
Mean Magnitude of Relative Error (MMRE):

MMRE — i\f: lestimated_ef fort — actual_ef fort]
— actual_ef fort

and Pred({), the fraction of projects for which the

relative error is less than {%.

Each model was measured on each of these crite-
ria in each of the 5 runs. The means and standard
deviations are summarized in table 3.

The first thing to note is that the errors are very
large, using any of the models. With MMRE, rel-
ative errors average over 100%; only about 20% of
projects are predicted to within an error of 25%, and
only 40-50% of projects are predicted to within an
error of 50%. Large errors are not surprising given
the widely varied nature of the data. Better accu-
racy is obtained in more specialized data sets (as
seen in [2, 3]). Large errors are also common in
estimates made early in a project [13].

On the basis of table 3, our results are quite
promising.

Firstly, it is clear that the intuition which gave
rise to the use of log regression has misfired. The
training error of log regression is significantly larger
than that of linear regression, although it general-
izes marginally better on the testing data set than
linear regression.

Secondly, GP has been able to dramatically im-
prove the situation. The GP MSE is far better than
both linear and log regression models on the train-
ing data. Although there is some loss of accuracy
on the test set — i.e. the GP model does not gen-
eralize perfectly — it is still far more accurate in
testing error than the two regression models.

GP performs better than linear regression mod-
els in all respects. Log regression models perform

much worse than GP on MSE, about the same as
GP on R? and Pred(25%), and better than GP on
MMRE and Pred(50%). One way of viewing this
is that GP has more effectively fit the objective,
namely minimising MSE, at the cost of increased
error on other measures. Since GP is indifferent to
the particular objective function it maximises, GP
could also be used to minimise MMRE, in which
case its performance on MMRE would be expected
to considerably outperform log regression.
According to Table 3, in terms of MSE, linear
and log-log regression perform better on testing
dataset than on training dataset. After analyzing
the dataset, we found that the reason is in our lim-
ited number of trials (5 in our experiment) with
small number of training and testing cases (211
and 212 respectively). Dominant cases, which im-

1 pact the result, are distributed unevenly in training
“ ¥ and testing datasets.

Linear Log GP

Mean STD Mean STD Mean STD

MSE Train 18.1 3.0 20.5 3.5 2.90 0.47
Test 15.4 2.6 14.5 3.8 5.40 0.61

R? Train 0.45 0.04 0.48 0.04 0.44 0.07
Test 0.36 0.05 0.41 0.08 0.40 0.08

MMRE Train 2.51 0.12 1.29 0.19 2.67 0.81
Test 1.94 0.23 1.04 0.10 1.91 0.67

Pred Train 0.17 0.01 0.22 0.04 0.19 0.02
(25%) Test 020 0.3 023 002 021 0.02
Pred Train 0.35 0.01 0.45 0.07 0.39 0.06
(50%) Test 037 003 051 002 040 0.06

Table 3: Mean and standard deviation of compar-
ison measures for linear, log-log and GP models.

(MSE scaled by 107°)

IV Discussion

In the linear and log regression models, size and
team_size are the main drivers of project effort. Size
is most important. Two typical best-performed GP
models are listed in Fig 2. Generally, the best-
performed GP models include a linear component
related to size (this term usually dominates the pre-
dicted effort). In addition to the linear component,
the best-performed GP models also include vari-
ous terms involving team size, and non-linear terms
involving size (e.g. log(size)). This suggests that
project effort is not just a linear function of project
size, but is actually a complex function involving
team size as well.

effort = size x (if application in {dss,missing}
then 5.34 else 1.68)
+ 18.5 x team_size X log(size)
+ 92.7 x log(size)

effort = 2xteam_size®> + 2xteam_size Xsqrt(size) + 4 xsize

+ 2xteam_size + 1246

Figure 2: Typical GP models

With the successful application of GP in this soft-
ware engineering program, we turned to Grammar
2, which is more general than Grammar 1. Not only
common mathematical expressions but also com-
plex if-then clauses can be generated in Grammar
2. In Grammar 1, if-then performs a relational test
in order to evolve proper constants for the whole
model while, in Grammar 2, the statement part
in if-then can be highly complicated. However, no
better result was found. After studying the results
of Grammar 1, we discovered that this outcome is
not surprising. In most of the best-of-run individ-
uals discovered by Grammar 1, there is no if-then
clause. This suggests that even in the evolution of
constants, those non-numerical attribute only play
a small role, as non-numeric variables can only ap-
pear in the condition part of if-then. Therefore, it 1s
natural to expect that these non-numeric attributes
would not impact much on the evolved programs of
Grammar 2.

But why should non-numerical attributes show
such little influence on estimated software develop-
ment effort? After all, experienced software engi-
neers have collected these attributes precisely be-
cause they believed them to be relevant to software
development effort.

Two obvious conjectures are that

e the non-numerical attributes are not closely re-
lated to the software development effort or

e the combination of these non-numerical at-
tributes are too complex to be discovered by

GP.

We incline to the latter. Intuitively, some non-
numerical attributes, such as whether a fourth gen-
eration language is used, or whether object oriented
techniques are employed, should influence the soft-
ware productivity perceptibly. However we believe
that the complexity of the search space, combined
with the relative paucity of data points, masks these

effects. Our further research will consider in more
detail how to discover and model these factors.

Other further research issues, that we will ex-
plore in the future, include:

e As we can see in our experiment, little back-
ground knowledge has been incorporated into
either of the grammars. We intend to work
cooperatively with domain experts to incorpo-
rate background knowledge in order to bias the
search space, which should lead to more accu-
rate prediction, and may ameliorate the prob-
lems of large search space and small dataset.

e The grammar itself can be automatically re-
fined during the GP process. It is likely that
novel patterns, leading to increased under-
standing, may be discovered through the anal-
ysis of the automatically refined grammar.

e Another key research issue is how to deal with
missing values in the use of genetic program-
ming for data mining. There are a large num-
ber of missing values in our data set. This will
often be the case for real world data mining ap-
plications. In other fields of data mining, this
problem has been investigated in detail, and a
variety of methods for handling missing values
are used. We intend to investigate their appli-
cability in GP-based data mining.

V Conclusions

Accurate estimation of software development effort
is important for the software industry. The research
in this paper successfully used GP for evolving so-
lutions to this problem. GP found models that are
dominated by the same key predictors of effort as
traditional models. GP models perform better than
traditional linear models — on all criteria, not just
on the criterion that was used in the GP fitness
function.

Compared with other learning techniques, GP
can be used to fit complex function and theoretically
its outcome 1s interpretable. Most of other learning
techniques simply can’t discover complex functions
as we involved using GP. A few other techniques
[14, 15] can be used for nonlinear regression but we
have to make good pre-guesses as to what functions
may be discovered. Artificial neural network can
fit the models, but whose outputs would then be
black-box while quite often we do expect the model
we discovered can be interpreted.

In this experiment, GGGP because of its flex-
ibility and the ability to incorporate background
knowledge, also shows great potential in application
to other software engineering modeling problems.

References

(1]

M. Boraso, C. Montangero, and H. Sedehi.
Software cost estimation: an experimental
study of model performances. Technical Re-
port TR-96-22, DEPARTIMENTO DI IN-
FORMATATICA, UNIVERSITA DI PISA,
Italy, 1996.

J.J. Dolado. On the problem of the software
cost function. Information and Software Tech-
nology, 43(1):61-72, January 2001.

C.J. Burgess and M. Lefley. Can genetic pro-
gramming improve software effort estimation?
a comparative evaluation. Information and
Software Technology, 43(14):863-873, Decem-
ber 2001.

John R. Koza. Genetic Programming: On the
Programmang of Computers by Means of Nat-
ural Selection. MIT Press, Cambridge, MA,
USA, 1992.

John R. Koza. Genetic Programmang II: Au-
tomatic Discovery of Reusable Programs. MIT
Press, Cambridge Massachusetts, May 1994.

David J. Montana. Strongly typed genetic pro-
gramming. BBN Technical Report #7866, Bolt
Beranek and Newman, Inc., 10 Moulton Street,

Cambridge, MA 02138, USA, 7 May 1993.

Frederic Gruau. On using syntactic constraints
with genetic programming. In Peter J. Ange-
line and K. E. Kinnear, Jr., editors, Advances
. Genetic Programming 2, chapter 19, pages
377-394. MIT Press, Cambridge, MA, USA,
1996.

P. A. Whigham. Grammatically-based genetic
programming. In Justinian P. Rosca, editor,
Proceedings of the Workshop on Genetic Pro-
gramming: From Theory to Real-World Appli-
cations, pages 33-41, Tahoe City, California,
USA 9 July 1995.

Man Leung Wong and Kwong Sak Leung.
Combining genetic programming and inductive

[14]

[15]

logic programming using logic grammars. In
1995 IEEFE Conference on Fvolutionary Com-
putation, volume 2, pages 733-736, Perth, Aus-
tralia, 29 November - 1 December 1995. IEEE
Press.

Michael O’Neill and Conor Ryan. Grammatical
evolution. TEEE Transaction on Evolutionary

Compuation, 5(4):349-358, 2001.

D. A. Gustafson, W. A. Barrett, R. M. Bates,
and J. D. Couch. Compile construction: The-
ory and Practice. Science Research Assoc, Inc.,

1986.

P.A. Whigham. Grammatical Bias for Evolu-
tionary Learning. PhD thesis, School of Com-
puter Science, University College, Univ. of New

South Wales, Australia, 1996.

S.S. Vicinanza, T. Mukhopadhyay, and M.J.
Prietula. Software-effort estimation: an ex-
ploratory study of expert performance. In-
formation Systems Research, 2(4):243-262, De-
cember 1991.

S. Dzeroski and L. Todorovski. Discovering dy-
namics: From inductive logic programming to
machine discovery. Journal of Intelligent In-

formation Systems, 4:89-108, 1995.

L. Todorovski and S. Dzeroski.
bias in equation discovery. In Proceedings of
Fourteenth International Conference on Ma-
chine Learning, pages 376-384, San Mateo,
CA, 1997. Morgan Kaufmann.

Declarative

