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Abstract—We investigate interactions between evolution, de-

velopment and lifelong layered learning in a combination we
call Evolutionary Developmental Evaluation (EDE), using a
specific implementation, Developmental Tree-Adjoining Gam-
mar Guided GP (DTAG3P). The approach is consistent with
the process of biological evolution and development in higir
animals and plants, and is justifiable from the perspective b
learning theory. In experiments, the combination is synergstic,
out-performing algorithms using only some of these mechasms.
It is able to solve GP problems that lie well beyond the scalig
capabilities of standard GP. The solutions it finds are simp#,
succinct, and highly structured. We conclude the paper witha
number of proposals for further extension of EDE systems.

Index Terms—Genetic programming, developmental, evalua-
tion, structural, regularity, modularity, incremental ev olution,
layered learning

|I. INTRODUCTION

the former, and especially, finding synergies between tliem,
an important task in progressing EC.

We concentrate on four aspects of evolutionary development
in complex organisms: an underlying evolutionary mechanis
a developmental mechanism, multiple evaluations througho
development, and layered learning of increasingly complex
problems. Implementing them in a Genetic Programming (GP)
system, we investigate their performance, in particulaesa
tigating whether they interact synergistically to solve reno
complex problems than the individual components can handle
The system, DTAG3P, is based on TAG3P, a grammar-guided
GP system using Tree Adjoining Grammars (TAG) [3].

In Section Il, we discuss the interaction of evolution and
development, both in biological systems and in previouskwor
on artificial systems, at the same time introducing the idea
of layered learning. Section IIl introduces the generaliéss
of structure and regularity in both artificial and biolodica

VOLUTIONARY Developmental Systems (EDS) [1] aresystems, and its relationship to evolution and development
powerful methods for generating flexible solutions tand especially to their interaction. Section IV introduseme

complex problems. We examine their combination with layrecessary technical background in L-systems, TAG grammars
ered learning strategies, showing that the resulting coabi and grammar-based GP, together with a brief introduction to
tion is both biologically plausible and computationallywso compression and its relevance to measuring complexity and
erful, generating structured and scalable solutions tiicdlf regularity. Section V details the DTAG3P system which is
function-learning problems. the subject of this paper. The experimental approach which

Evolutionary Computation (EC) is based on analogy beve used to validate some of the ideas, and the problem
tween computational and biological systems. The analogyfignilies we used, are outlined in Section VI, with Section VI
rooted in the insight of Charles Darwin [2] that variationietailing the relative performance of the different system
and natural selection can together explain the vast vadety solving these problems. Section VIII looks in more detathat
species we see in the natural world. results, and in particular at the simplicity and reguladfythe

Any analogy depends on an abstraction, ignoring aspestsiutions that are found. We examine the overall capadsliti
that are unimportant to the target. The core problem is & the DTAG3P system, and the assumptions and limitations
determine which aspects are inessential. In the case of EEthe current stage of this work, in Section IX, leading into
it is clear that we have not yet captured important elemehtsa discussion of some of the future research that can follow.
biological evolutionary systems. We cannot evolve an aidifi We round out the paper in Section X with a summary of the
system with the intellectual performance and effectiver@fs results, and overall conclusions that can be drawn.
a human — or even a fly. Some aspects of biological evolution
may be important to the performance of any evolutionary sys-
tem, whether natural or artificial. Others may be specifihito t
requirements of DNA and protein chemistry, the requirement The best-known EC variants [4]-[6] assume an identity
of survival in a 3-dimensional world, and so forth. Idenitify or direct matching between phenotype and genotype, corre-
sponding to a posited RNA world, that occured very early in
the evolution of life [7]. More recent variants provide for a

Il. EVOLUTIONARY DEVELOPMENTAL SYSTEMS
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genotype-phenotype mapping [8]-[10], corresponding ® th
decoding of DNA to protein in simple unicellular organisms.
While unicellular organisms can optimise themselves for a
complex world, they attain only a bounded complexity; the
complex individuals of today’s biology only began to emerge



TRANSACTIONS ON EVOLUTIONARY COMPUTATION CLASS FILES, VOL?, NO. ?, ? 2010 2

once multicellular organisms with developmental mechanis through predator-prey interactions. Kowaliw and Banzhaf’
arose. This insight led early researchers such as Kitanp [Bhgiogenetic system [28] incorporates local evaluatiothef
and Gruau [12] to propose evolutionary developmental systecirculatory system during the process of development. In a
(EDS), in which the genotype codes for a process throughactical application, Tufte and Haddow [29], [30] invesiied
which the phenotype emerges. This parallels the way DNAe structures and functionalities that could be achiewed b
instructions define the growth pattern of an organism. IntmdsPGA-based developmental systems, evolved on a single
such systems, an important contributor to complexity is tiproblem but then generalised to other problems.
context dependence of the interpretation of the genotype. T Although not usually viewed as an EDS, Stoffel and Spec-
same genotype component may generate different phenotypics ontogenetic programming [31] also sees a varying $gne
components depending on its history and context, just as fisection during the course of its development/execution.
expression of a particular gene in an organism may depend ofThe idea of program execution as development has been
its cellular history and context. taken much further in Harding et al.'s SMGGP [32]. Again, the
A variety of representations have been used for EDS, mapsogram’s self-madification throughout the course of depel
based either on Lindenmayer systems (L-systems [13]-[1B}ent effectively changes the fithess landscape. Integgdgtin
or on cellular automata (CAs [16]), but with many otheSMGGP has been applied to Boolean parity problems [33]
variants [17], [18]. similar to those reported here, though differences in the
EDS have been conspicuously successful, generating a widection sets make it difficult to compare directly. Howeiter
variety of research, enough to form a separate track in tece&napparent that both developmental systems show suladtanti
GECCO conferences. However development is a complicreased performance when compared to non-developmental
process, and its interaction both with evolution and withystems.
the external environment is even more so. A wide range ofIn many animals, and most plants, that is all there is to &: th
systems have been built, incorporating different aspe€ts rew organism is seeded into its environment, and has to grow
these interactions. through all stages in that environment. However it is notewo
thy that across the various phyla of higher animals, a furthe
behaviour has arisen multiple times in unrelated phylatrodn
of the environment by the parents, so as to provide the child
We are specifically interested in how the developmentaith a staged series of environmental challenges, inargasi
process interacts with evolutionary fitness evaluationnfain complexity as the child matures. Some hints that this migh
EDSs [11], [12], [14], [15], [19]-[22], that emphasise othenot be accidental can be seen in the gradual evolution of the
aspects, have a relatively simple model for this. Individugomplexity of this staging, from the simple protection ohfis
genotypes are generated through normal evolutionary peygs by their parents in some species, through the intricate
cesses, the resulting genotype is then grown through itsldewhrooding mechanisms of many bird species, to the complex
opmental processes, and the developed phenotype is edlugkstational and parental care mechanisms of mammals.
through its environment. This is a reasonable abstractiuh, This Staged exposure to more Comp|ex environments may
it leaves out an obvious aspect of biological developmenigihy another role. Each stage of development must be well
systems, that the phenotype is not evaluated just once, BHbugh adapted to its corresponding environment to survive
rather continuously throughout development: there is riotpoput also be sufficiently flexible to generalise to the next
in having the genes required for an olympic athlete if onesdognvironment at the next stage. An organism which overfits
not survive the embryonic stage. to the problem at one stage will find it difficult to adapt later
A wide range of other EDS do evaluate the fitness @ind so will be out-competed by individuals that, while sogyi
individuals during development. In some, the evaluatioofis the previous environment well enough, are adaptable todutu
the same problem, repeatedly re-evaluated. Viswanathdn @nvironments. In accordance with parsimony theory from
Pollack [23] demonstrated that evaluation during develepim machine learning (see [34], ch. 7), this leads to prefeaénti
could speed up evolution on a single problem, by using goeglection of more simply structured individuals, and also t
solutions found at earlier stages of development. Milled artontrol of runaway expansion in genotypic complexity.
Banzhaf [24] guided their system to evolve and develop flags
and Boolean circuits by repeatedly presenting the desired
fitness function during the process of development. McPhBe
et al’s IFD N-Gram GP system [25] goes one step further, Incremental learning problems are well-known in machine
using repeated evaluation of the fithess function not only learning; the earliest reference we know is in de Garis’ work
evaluate the fitness, but also to impose environmental seddbon evolving neural controllers for robot locomotion [35{jtb
on the developmental process. is better known through Stone and Veloso’s work on layered
In biology the fitness function changes during the lifetimiarning [36]: a series of problems are presented to a learne
of an individual. In simpler cases, the change is random, ioran order which allows the solution of one to assist with the
results from coevolution. This has commonly been simulateext.
in artificial worlds such as Tierra [26]. Layered learning has a long history in non-developmental
Jung’s [27] topological model for neural network developEC [37]-[39]. In these systems, problems are presented in
ment is repeatedly evaluated during the creature’s demsdop order to the evolutionary system, and the population at tite e

A. The Interaction between Evaluation and Development

Layered Learning
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of each round of learning is used to seed the initial popaati C. Requirements for Evolutionary Developmental Evaluatio
for the next layer. _ _ To fully model these aspects of biological evolution, a
In EDS, layered learning has been used in the work @f,mpber of components are required:
Bolouri et al. [40], in gradually building up the task comxitgy
(in this case, neural visual processing) by evolving first fo
a simple task, then for incrementally more complex tasks.
In these systems, the layered problems interact with the
evolutionary system in the same way as in non-developmental
systems; there is no direct interaction between the Iayeredz)
learning problems and the developmental process.
However this differs from our focus. In this work, we
more directly analogise parental control of the developalen
environment. That is, the layered learning stages are ptese
not to the system as a whole, but to each individual dur- )
ing development, one layer per developmental stage. If the

LS ; o ) toward earlier stages. The more difficult problems are
individual is uncompetitive at one layer/stage, it does not : .

i : evaluated sequentially during the developmental process.
get to progress to later ones. We implement this through an

incremental tournament selection mechanism that we dataill? S0me of the experiments we describe below, we make use

1) Developmental process governed by ‘geng&ke under-
lying genotypic representation should support both an
evolutionary process (that is, it must be evolvable) and
a developmental process (that is, it must incorporate a
developmental process controlled by the genes).
Developmental evaluatiofit should be feasible to eval-
uate the representation yielded by the developmental
process at each stage of development.

3) Layered learningThe complexity of the problems han-
dled should increase throughout development.
Evaluation in sequencdhe evaluation should be biased

Subsection V-C. of two further abstractions from biology:
Sekanina and Bidlo’s system [41] is close to this in spirit, i 5) Adaptive variation ratesGood building blocks found at
emphasising the interplay of evolutionary and developaient ~ €arlier evolutionary — and hence developmental — stages

dynamics. However they use an additive fitness function over ~ Should be subject to reduced evolutionary pressure at
the fitnesses at each stage of development, so that goodsfitnes  later stages (leading to the effect sometimes referred to
at a later stage in development can compensate for poorditnes  in biology as "ontogeny recapitulates phylogeny” — that

at an earlier stage, thus reducing the evolutionary pressur is, embryological development to some extent parallels

produce generalised individuals. A similar approach ieiek evolutionary development).

by Krohn et al. [42] in using an additive fitness in a fractal 6) Varying semantics during developmektechanisms are

protein developmental system to approximate the digits.of needed for genotypic elements to generate different
1) Are Biological Problems Really Layered™ is impor- phenotypic effects at different stages of development.

tant to clarify exactly what we are claiming about biology
in pursuing this analogy. We do not claim that the complexify. |mplementations

of biological developmental processes increases mora#iyi We introduced a version of the above mechanisms in [43];

throughout development. Far from it. Angiogenesis, asistud . L
. . however that system involved a trivial development process
by Kowaliw and Banzhaf [28], provides a clear example

: . ) A version similar to that presented here, but with more
Angiogenesis starts off slowly during development, thesdgr . . .
r%c_hmentary mechanisms for controlling the developmental

ually speeds up — but reaches a peak sometime during chil .
hood, then tails off. Kowaliw and Banzhaf’s results suggeg{ocess through meta structures, was presented in [44].

that the later stages may be governed by local search rather
than genetic control, so that from the control perspective,
peak of complexity may come even earlier. We alluded earlier to a hypothesis that a staged interaction
This is not in conflict with our claim, which is that thebetween evaluation and development may impose general-
complexity of the fitness evaluation at these stages ineseassation pressures on evolution, and thus can then lead to
monotonically (or nearly so) — for respiration and circidat more regularly-structured individuals than would arisexam-
as for everything else, at least during the evolutionarilgevelopmental systems. We introduce here some of what is
relevant period up to reproductive maturity. Initiallyetie is no  known about the growth in complexity and/or regularity in
respiratory problem for the developing embryo — it can handboth artificial and biological evolutionary systems.
all respiration through diffusion. By day 22, the embryo has Individual complexity has been most heavily studied in
a complex beating heart. But it does not need it. Substintiayyenetic programming (GP), developed by Koza, Cramer and
larger animals than the 4mm embryo can survive perfectbghers [6], [45] with the intention of automatically solgn
well without one — even in the absence of a free supply pfoblems using computers. Based on observations of bio-
richly-oxygenated maternal blood. The embryo has a heartlagical systems, GP uses an abstraction of Darwin’s natural
day 22, not because it needs it then — it will not die then #felection mechanisms to evolve populations of solutions to
it fails to beat — but because it will need it later and dagroblems.
22 is an appropriate stage to develop it. This requirementA core problem in GP research is the phenomenon of bloat:
is imposed, not by the day-22 fitness evaluation, but yP generates solutions with large amounts of irregular and
fitness evaluations much later in the development procéss. Tunnecessary code, that dramatically increases over tinte, a
respiratory requirements themselves do change monotlynicés not proportionate to any increase in the quality of solusi
(and at birth, in a quite large step) throughout developmentnitially, the analogy was drawn with biological systemsrF

IIl. REGULARITY IN EVOLUTIONARY SYSTEMS
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example, the human genome uses less than 5% Bfits10° It has been argued (e.g. by Lehre [58]) that the emergence

amino acid codons (ACTG) to encode proteins. At first, thef regular structures requires a developmental process. It

remainder was thought to be largely non-functional [461] arpossible that this emergence may be further enhanced by

in this way analogous to some forms of GP bloat. the generalisation pressures imposed by repeated ewaluati
However this analogy is doubtful on a number of grounds. dtluring development. Testing this is an important focus ef th

has become apparent since the original decoding of the hunessgperimental work reported here.

genome that the situation is more complex than originally

thought. Substantial portions of the genome code for usefyl Regularity in Evolutionary Developmental Biology

RNA, and are under active selection pressure [47], [48]. : , : i
In addition, the growth of the biological genome does no How important and widespread is the development of reg

o ; . - C
resemble that of GP. In the2 « 10° years of eukaryotic utlarlty in evolutionary biology? Examination of nature ss

. . . .that regularity and modularity have repeatedly evolved.
evolution, the genome size has fluctuated widely, by up to f|veIn this subsection, we first cover some background in

orders of magnitude, but there is no evidence whatever of 3 Volutionary Developmental Biology (Evo-Devo). We then
t.re'f]d toward Increasing growt_h [49]. There S current_lyyonldiscuss how regularity and modularity of structure arise in
limited understanding of the drivers of biological genornzes genomes

or even whether it is under qctive sel_ective pressure [itod{ 1) Evolutionary Developmental Biology (Evo-Devdvo-
tbr:er(i _cang)Je no doubt that it bears little resemblance to C%jﬁonary developmental biology, often informally knowry b

oat in . - . the term “Evo-Devo”, is the study of the relationship betwee

Bloat in GP results in irregularly-structured solutionada . . :

e e o o . . evolution and development. It is an old area of study, first
this in turn leads FO d!ﬁ|cult|es in scalability. Blologlbgeno- jnvestigated in the now somewhat overshadowed and discred-
types are also fairly irregular and npt too compress[blq.[Sgted work of Haeckel [59]. It was however, resurrected and
However when one comes to the higher-level effective co &’Jt on a sound scientific footing by Gould in “Ontogeny and

the parts of the genome that are subject to selection, it Fﬁiﬁylogeny“, 1977 [60], with an emphasis on the importance of

apparent that regularity and structure abound, as epl‘mn'Teterochrony (developmental change in time) “as a mecimanis

by the homeobox genes that control segment developmen an evolutionary change” [61]. Lewis in 1978 proposed the

all bilateral animals [51], [52]. Their typical arrangeni@nthe eneral field of “Evo-Devo”, stemming from the discovery of

genome directly reflects their phenotypic effect on S‘egmenﬁomeobox (Hox) genes, in particular the homeotic genes Ubx
with genes occurring along the chromosome in the same or% r '

as the segments whose phenotype they control [53]. In tl?(ljsd abd-A and their role in inhibiting abdominal appendage

. fmation in insects [62].
regular structure, they differ very greatly from the gerpely Biologists use the concept of Evo-Devo to understand
that arise in GP.

morphological structures. Morphological changes in etiofu
generally result from developmental changes. Thus we need

A. Regularity and Modularity .
i ) _ to understand developmental evolution in order to undedsta
The termsFunctional modularityand Structure regularity morphological evolution. For example, the diversity dbx

were first introduced to evolutionary computation by Dgjnjing sites (gain or loss) in theis-regulatory region drives
Jong [54]. Around the same time, Woodward [55] explainggle giversification/distinction of butterfly hindwing patbs

a module as “a function that is defined in terms of a primitivgnd of insect Hox-independent forewing patterns [63], see
set or previously defined modules”. Lipson subsequently, [5EFigure N-B11

[57] defined functional modularity as the “structural lasat
tion of function” and structure regularity as “the compib#s
ity of the description of the structure” or “the correlatiof
patterns within an individual, such as symmetry, repetitod

Evo-Devo opens the ‘black box’ to reveal the causes of
the great variations in morphology of complex animals. Many
genes controlling morphological development have now been
L : > L ) identified, and the role of changes in these genes in driving
self-.S|m|Iar|ty, allowm_g evo!uthn_to specify mcreggly ex"- phenotypic change between species is nhow being unravelled.
tensive structures while maintaining short descriptiomgtas”. As Carroll put it, “all complex animals — flies and fly catchers

Lipson argued that the terms modularity and regularity agg,osaurs and trilobites, butterflies and zebras and humans

often confused in the literature through the notion of re:Us,| share a common ‘toolkit’ of ‘master’ genes that govera th

Indeed, useful modularity can Pe_ repeated at higher staggsyation and patterning of their bodies and body parts’.[64
of the development as good building blocks. Also, strudtura pasearch in Evo-Devo has provided strong confirmation

regularity appearing with a repetition of a pattern could Bgat reqularity and modularity are essential for evolutign
understood as functional modularity. development [53], [65]-[67].

In Computer Science, "modularity” connotes encapsulation 2) Regularity and Structure in Biological OrganismBor

and re-use. ]n biology, |.t.seems to be used more broadly, ,aémmler organisms, there is strong evidence of evolutpnar

is often apphed to repetitions of patterns where no medmn'p[essure for compressed and regular genotypes (see, for ex-
for re-use is proposed. For these reasons, the term canyreagy, o '(5g]). In the current state of knowledge, evidenae fo
cause confusion. Since in this paper we are primarily istee® ;o5 reqylarity in the genome of higher organisms is harder

in the repeti'Fio_n and variation of sub-strgctures (in Gl?r_mar to find. Despite perhaps 20 years of research, the best turren
re-use of building blocks), we try to avoid such confusion by

using the term ‘regularity’ wherever possible. LReproduced by kind permission of the author.
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had various roles, encoding two slightly different proein
multiple tissues of both sexes, and in sperm (Figure 2).rAfte
more than 35 million years, a duplicate jahusAmutated to
janusB which specialised to encode a sperm-specific protein.
During the next 15 million yearganusB generated another

)

Diptera Lepidoptera Coleoptera

X ' P variant after duplicationpcnus which specialised to encode
B another sperm-specific protein.
h patterns and Ubx-reguiated rd
2 hindwing pattems 2

\‘uc on 1 {> 35 mya)
janusA janusd
Four winged ancestor
Nsww 2(=15mya)
Fig. 1. Hox Genes and Divergence of Morphological Struct&8]! janusA janusE oenus

i _ s 3wl &N mm .

Testis and general expression  Testis-specific expression Testis-specific expression

compressi(_)n achieved for W_hole eukaryotic genomes isla IitLig. 2. An Example of Gene Duplication [78].
over 1.5 bit per base [69], i.e. a compression ratio no better
than 0.375. It may be that eukaryotic non-coding regions are
not under selective pressure for regularity, or perhaps we C€) Segmental duplicationSegmental duplication is de-
have simply not yet identified the structure of this regulafived from the repeated transpositions of small portions of
ity. Nevertheless, there is indirect evidence that regylas Chromosomes. Perhaps the best-known are the Alu elements,
useful for eukaryotic organisms, and that mechanisms have300 bp segments derived from the 7SL RNA gene, which
arisen to promote it: the widespread emergence of dupsicati2Ppeared shortly after the evolution of the primates 65
mechanisms. Repetition of regular structures in bioldgicBya [77]. While their overall function is unknown, there are
organisms has increased through repeated duplications afund 1.4 million in the human genome, occupying0% of
many scales. The mechanisms involved in these processest@getotal genome (greatly outweighing genes). New insestio
quite different, suggesting that repetition may not be fiyereoccur around every 200 births. Another 20 kbp segment [78]
accidental, but selected for. We briefly review a few, to dra@f chromosome 16, LCR16a, has generated 15-30 copies in
out how important these mechanisms are to evolution. @ 15 Mb section of the short arm of human and chimpanzee
a) Genome Duplication:Whole or part genome du- chromosome 16 (between 12 and 5 milion years ago).

plication is common across the biological kingdoms. The
yeast genus Saccharomyces, has experienced a whole genGmBevelopmental Control

duplication [70]. In plants, it occurs sufficiently ofterattnew The biological developmental process is highly complex,
terms (tetraploidy, polyploidy) have been defined to dé&&criincorporating both feedback within the developmentaleyst
it [71]. The entire animal genome has been duplicated at legges, through complex control structures [79], and fesck
twice prior to the split between tetrapods and fish [72] — afghm the environment. These feedback mechanisms are im-
once again in the main fish lineage. portant, and finding suitable abstractions for them in ED& is
b) Gene Duplication:Ohno [73] argued that gene-leveligh priority [25], [28]. One important consequence of thes
duplication is a key evolutionary driver. A duplicated gengontrol systems is that the developmental stage is imilicit
sees reduced selective pressure, releasing it from some-of Byailable to the developmental process as one of its inputs.

tation's disadvantages. Genes often fulfil multiple fuoos. |n this work, we provide a very crude abstraction through the
Once a gene has been duplicated, both copies are freepteta’ mechanisms we describe later.

specialise on some of the functions, without risk of loss of

function. und th " . _ il IV. TECHNICAL BACKGROUND
Gu [74] found that yeasts with mutations in a single copy | . section, we introduce some of the tools that have

of a gene grew slower than did those with mutations occurrir%% . . .
. . . en used to build a system meeting the requirements from
in one copy of a duplicated gene. By these mechanisms, gene

L . I . . section 1. The main components are Lindenmayer systems
duplication can esta_\b_llsh sophlsncate_z(_j expression aﬁgul (L-systems) and Tree Adjoining Grammars (TAGS).
For example, the original green-sensitive opsin of the atém
ancestors has split into two separate opsins with diffefreat
and green) sensitivities in hominoids and old-world morsieyA. DOL-Systems and Development
resulting in their much improved color vision [75]. L-Systems were introduced by Lindenmayer in 1968 [13],
In Drosophila melanogasteran ancestral genganusA using the central concept of a rewriting mechanism to siteula
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the developmental processes of natural organisms. They BreTree Adjoining Grammars and TAG3P
closely related to Chomsky grammars [80], the essential dif
ference lying in the method of applying productions. In Chon%o

jvli]yet;:]er:;nrir:]arssg,mprlzdliilo;z;rse tzgp“z?engn_d"itgrmlnlzurgﬁCf‘.rammars (CFGs) for representing natural language. Theey ar
. b y y a bp P Based on the insight, that a sentence such as ‘The big black
to simultaneously replace all letters in a given word. This o .
Cat sat licking its paws on the plush, comfortable mat, which

difference reflects the biological motivation of L-systemps- . : .
- . . t had commandeered’ may be analysed as a basic sentence
viding a commonly used formalism to describe developmenlfl

processes of natural organisms. A deterministic and contex. so-calleda-tree) "The cat sat on the mat, into which

i 1 .Insertable elementsg-trees — ‘big’, ‘black’, ‘licking its paws’,
free L-system, also known as a Deterministic L-system Wlfﬁlush', ‘comfortable’, ‘which it had commandeered’) have

O-interactions (DOL-system), is the simplest type of Lteys. been inserted (adjoined) at grammatically-appropriateas

In these deterministic systems, exactly one productiori . .
y Y P P _ and that these basic and insertable elements can themselve

to any symbol of the L-system a'ph‘?"?e_t' and the_ p_roductlogg further decomposed in the same way. TAG representation
are also context-free. The formal definitions describingda-D . . : : o
en consists of a tree recording the insertions and sutistits

system and its operations are given below. A DOL-system [1 )
Y P 9 4 [ of new components into the so-far-constructed sentencé. TA

IS an °Tdered tripleG = (V,w, P) whe:e. grammars can just as readily be built for arithmetic or other
» V is the alphabet of the systerti,” the set of all words expressions as for sentences (TAG grammars subsume CFGs:
overV*. . . every CFG can be represented as a TAG). The representation
c wEV'IS a*r_10nempty word called tm'om . has many advantages, both for natural language processing
« PcVxViisa f|n|teset.of productionsA production —y ¢ GP, but in this context the key advantage is one of
(p,s) € Pis writtenp — s; p andss are thepredecessor ., iateness: any rooted subtree of a TAG tree represents
and successoof th's produc_tpn. . a complete individual which can be immediately evaluated
* Whgnevgr there IS no eXp.I'C't mapping for a symiol (‘The cat sat on the mat’, ‘The black cat sat on the mat’,
the |de_nt|ty mapping = p IS as_sumed. ‘The big, black cat sat on the mat’, ...). In this work, for
» There is at most one production rule for each symb9 chnical reasons, we use lexicalised TAGs (TAGs in which

peV. . every elementary tree has at least one lexical element on its
Let p = pips...p,, be an arbitrary word ovel’. The word frontier).

s = 81832...8m € V* is directly derived fronp, denote = s,
iff p, — s; foralli € {1...m}. If there is adevelopmental
sequencepg, p1, - --,pn With poy = w, p, = s, andpy, =

Tree Adjoining Grammars were introduced by Joshi [81]
overcome some perceived problems with Context Free

The use of TAG representation to encode expressions, and
more specifically as a GP representation, is described aildet
. o in Nguyen et al. 2006 [3]. For convenience, we reprise from
p1... = pn, We SAY thalG generatess in a derivation of that paper the formal definition of a tree adjoining grammar:

length . A tree adjoinin rammar is a tree-rewriting system
In short, DOL-systems operate on sequences of symbols J 99 9 sy

calledstringsor words In a singlederivation stepeach letter consisting of a quintupld’ = (3, N, I, 4, 5), where:
in the predecessor string is replaced by its successor using
the applicable production from the production set P. Thel) ) is a finite set of terminal symbols.
developmental process simulated as a sequence of such
derivation steps, beginning with a given initial stringjJled  2) XV is a finite set of non-terminal symbol&/ N3 = 0.
the axiom and denoted.
An example of a DOL-system is shown as in Figure 3 at 3) S is a distinguished non-terminal symbdl:c N.
three stages of development. The developmental process is
generated by the DOL-systed = (V,w, P) with alphabet 4) I is a finite set of finite trees, called initial trees (or

V =(S,A,B,C,z,y,z), axiomw = S, and the production a-trees).
set P given by: In an initial tree, all interior nodes are labeled by
e« P:S > 2AB non-terminal symbols, while the nodes on the frontier
« Py: A~ yB2B are labeled either by terminal or non-terminal symbols.
e P3: B — 2Czx Non-terminal symbols on the frontier of an initial tree
e P :C— A are marked with| (for substitution).
S 5) A is a finite set of finite trees, called auxiliary trees (or
l (-trees).
xAB XAB In an auxiliary tree, all internal nodes are labeled by non-
T~ terminal symbols, and a node on the frontier is labeled
yBzB xCzx XyBzBxCzx either by a terminal or non-terminal symbol. The frontier
sz‘x/ \Xézx A XyXCzXZXCXXAZX must contain a distinguished and unique node, the foot

node, labeled by the same non-terminal symbol as the
Fig. 3. An Example of DOL-system tree’s root node, and marked with an asterisk (*); other
nodes on the frontier labeled by non-terminal symbols
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are marked with| (for substitution). ?

a)
. . @D
The trees inE = I U A are called elementary trees. Initial /
trees and auxiliary trees are denotednd 3 respectively. A /@\ @
tree with its root labeled by a non-terminal symbol X is cdlle O) % @

an X-type elementary tree. N\
In essence, arx-tree with all terminal symbols on its

® © ORNO)
frontier is just like a minimal complete sentence, whilgta Qé\ /é}
@@ WO

tree is a minimal recursive structure used to modify coneplet
sentences. : e
. . . Fig. 4. GP Code Bloat E | d its Simplification (b

Tree Adjoining Grammar Guided Genetic ProgrammlngIg ade Bloat Example (a) and fts Smpliication (£)
(TAG3P) — the system on which DTAG3P is based — is a typi-
cal grammar guided GP system, with the sole exception of t8gown [88] to generate substantially greater simplificatian
use of TAG derivation trees, rather than CFG derivationstregne more commonly-used syntactic simplification.
as the individual program evolutionary representation [3]

V. THE DTAG3P SrSTEM

DTAG3P is the core system in this work. It is built on
Much EC research has aimed to generate modular, reQu{a earlier non-developmental TAG3P system, in which TAG
solutions [14], [44], [82]-[85]. However developing & metr grammar trees act as genotypes, and are transformed in turn
to measure regularity and modularity, and hence to objel§tiv into CFG trees and then expression trees for evaluatiors Thi
compare the effectiveness of different mechanisms in ptomgeemingly complex transformation is used for good reason:
ing regularity and modularity, has only rarely been atteetpt TAG trees have important properties absent from CFG and ex-

Hornby recently developed such metrics [86], [87], but agyession trees. In this context, the most important is Eilitgi
sumed an explicit and specific representation of modular@rG and expression trees are difficult to use in developrhenta
(the computer science perspective), which is poorly suited systems, because it is difficult to extend them while retajni
measuring emergent regularity (the biological view). We usjidity (which probably explains why few, if any, develop-
an alternative based on compression. mental systems use classic tree-based GP representations)
Individuals with structural regularity have a repeated-SulaG trees don't have this problem. Any legal extension of
structure or pattern; hence they should be more compressib)l yajid TAG tree, will generate a new valid TAG tree. Thus
Thus measuring compressibility provides one way to imjici they form an ideal substrate for a developmental tree-based
measure specific kinds of modularity (those that correspondgp, However if TAG trees are to form the developmental
the coder’s assumptions) [88]. framework, we still need a genotype representation. Weehos
Data compression is the process of encoding data usidgmodify DOL L-systems so that they could support the
fewer bits than the unencoded raw data. Compression a'@@ovvth of TAG trees. Thus the genotype consists of a set of
rithms include two components: thmodel and thecoder poTL rules, a tree-based analogue of DOL rules. These are
The model captures the probability distribution of the ové expanded during development to grow a TAG tree; at each
data by discovering regularities in its structure. The codgtage, the TAG tree is transformed into a CFG and then into
takes advantage of the resulting probability biases to ge@e an expression tree (as in TAG3P) to permit evaluation. Eigur

efficient coding of the same data. “shows an outline of the structure of the overall system.
Our data consists of GP trees generated from a variety

of GP systems. Thus we use a tree compression algorithm, i

XMLPPM [89], which is an extension of the Predict by Partiaf*: G€notype encoding, TAG-based L-systems

Match (PPM) model [90] to the compression of trees. The DOTL system takes on the role of DNA, being the
In GP, code bloat is almost inevitable [6], [91]-[93]. Insubject of the evolutionary variation operators, but it & n

Figure 4 we see an example (a), which may be replaced tiyectly evaluated. The DOTL system encodes the instrostio

a smaller tree (b) with identical evaluation. Ineffectivede for growing a TAG derivation tree (somewhat in the way

may incorporate a large amount of repeated code, hence it nilyA encodes instructions for growing proteins), but that is

change the compression ratio of the tree. Thus any regularibt the direct subject of evaluation either. Rather, justhas

metrics should measure the compressibility, not only of tlggowth of proteins and their cellular organisation creates

whole solution genotype tree, but also of the effective .padrganism (the phenotype) that is actually evaluated, so our

This requires reliable methods of eliminating ineffectbsae. TAG derivation trees then generate first CFG derived trees,
To find the effective code, we use ‘equivalent decisioand then GP expression trees, which are directly evaluated,

simplification’ (EDS) [88] to convert a tree into an equivale and hence are described as the phenotype. For want of a better

smaller tree. EDS determines the equivalence of code sagmdarm, we describe the TAG and CFG trees as "intermediate

by semantic checking, testing whether they are equivaket o phenotypes”.

a set of fitness cases, in place of the (necessarily incom-Deterministic Tree L-systems with O-interactions (DOTL-

plete) pre-determined sets of rules used in syntactic simpdystems) are a generalisation of DOL-systems, in which the

fication [94]-[96]. This semantics-based approach has beRight Hand Side (RHS) of a rule, instead of being restricted

C. Measuring regularity in Evolutionary Computation
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Fig. 5. Schematic Structure of DTAG3P Evolutionary / Depetental / Layered Learning System

to a string as in a DOL-system, is a tree. It neverthelessmbered in this way: the root is labelled as 0, and then the
contains a mixture of non-predecessor and predecessos Aodenly other adjunction location is labelled as 1.
In the particular variant used here, predecessor nodesnéye o
permitted to occur on the tree frontier gftrees. An example
of a DOTL-system appears in detail in the next Section.

We assume there is a pre-defined TAG gramriiar=

TABLE |
(PART OF) AN EXAMPLE DOTL-SYSTEM

P L1 — Bg:O(ﬂz:l(L521))

(Z,J_V,I,A,S), together with a new set of (L-systgm) non- Py Ly — B10:0(310:0(810:0(3:0(B2:0(L12:1)
terminals L = {Li, La, Ls,...}. A DOTL-system in this
representation comprises a triple G, (w, P), where: b5 Ls = B6:0(L12:0,61:0)

« V = LU A: that is, the alphabet, consists of the set Pia: Lia — B5:0(L12:0,81:0)

L = {L,,Ls, Ls,...}, the L-system nonterminals (i.e.
symbols that can act as the left-hand-sides of L-system_. . .
Figure 6 depicts tree representations of these rules, and

rules) together with the set of auxiliary (3) trees from h h . f the initial h h th
T, which act as the terminals of the L-system grammar. ows the expansion of the initial tree through them. [tstar

« The initial axiomw consists of an element of (an o with the initial tree inw, o, and a corresponding predecessor

tree), in which one of the adjunction locations has bee[:r_)ﬂ' Py can be_ replaced by the _cor_re_sponding right hand
marked by one of the;. side, L, resulting in the stage 1 individual. This tree now

« The set of rewrite rules? = {P, : i — 1..m} have contains a predecessé% (in general, we might have more
the form P, : Ly — T(S1, S, ZS') wheré.the right- than one, depending on the rules we evolved), which can then

hand side is an (extended) auxiliary (beta) tree in TAC?,e expanded by.; to give the stage 2 individual. This process

with eachS; being an element of’, and T being a tree can be repeated until all developmental stages (here, 3 hav
built from them. Any nonterminalsZ(;) must lie on the been completed.
frontier of the tree.

As an example, we might have a TAG grammat = B. DTAG3P

(> N, a1,B,...,53,8") and a DOTL system G'=(V', DTAG3P uses the TAG-based DOTL system to encode
W', P) with V'={Ly,..., L2}, w’ = (a1L1), and P’ con- the construction of TAG derivation trees, thus defining the
taining productionspP; ... P> with, for example, produc- language bias of the genetic programming system. DTAG3P
tions P, P», P5, P12 having the right hand sides shown agroceeds through evolution of the L-system rules. In the
Ly, Ly, Ls, L1 in Figure 6. We will also use a bracketecturrent version, the DTAG3P system maintains a fixed size set
notation as shown in Table I. The bracketed notation has tbgrules, though there is no in-principle difficulty in makithe
following meaning:3;(8; : 1;, Bk : lx) is to be interpreted as

the adjunction of auxiliary treg; at location/; in parent tree  °In general, in TAG trees, we can permit adjunction to both rtet and

) i ; ; the foot of a3 tree. However this can cause problems, because the same
Bi, and of aUXIIIary trees;, at location;. The locations are node can be both a foot and (after adjunction) a foot. Thexaddificulties in

interpretation (how should we interpret such a node) ansl fr@ot/foot nodes

?Because the predessor nodes behave at some times likemimatis and  would be twice as likely to be adjoined as other nodes). Fesdhreasons,

at others more like terminals, we use the terminology preskar / non- we don’t permit foot adjunction; since the highest arity ggammars use is
predecessor instead. binary, we only ever have at most one non-root adjunctiomation.
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a B1. B3. B5. B7 B2, B4, B6, B8 L1 L2 L5
EXP EXP EXP / B3: 0 / £10: 0 p6: 0

\ A A B2:1 B10: 0 L12:0 pB1:1

VAR EXP OP EXP* EXP* OP EXP
S | NN i

x x ) +H*ll X 2 =

B9, Bé;,:ﬂ, g12 P1,EF':|;..., P12 p1<1 A
[\ ]\ B7: 0
PRE EXP* PRE EXP* /
I | B2: 1
sin|cos|epl|lg Li (i=1,..Nrules) \
L12 1
EXP
/\
EXP OF EXP a
|| o i
varR * E>|<p DIP EXP 53:\0 s
e
X EXP " ExP oP EXP p2: 1
A T T 7
EXP OP EXP ViR T EXP 0P EXP LS :1
A8 1 1 AT A
EXP OP EXP ' VAR X PT.E exp * PRE ExP pe:0 Stage2
VAR T VAR x L12 VAR L12 VAR L12: 0 B1:1
X X X % I
B6: 0 Stage 3

L12: 0 B1:1

Fig. 6. An Example TAG-Based L-system and its Developmerduph Expansion:

Top Left, pre-specified TAG grammar; Top Right, DOTL Rules;

Mid Right, First Three Stages of TAG Tree Development; MidtLEorresponding Third Stage CFG Tree;
Bottom Left, Corresponding Expression Tree

rule-set size variable (however variable rule-sets woeitpiire  solution space for the specific family of problems.
additional operators, and thus additional parametemsgptti The genotype-to-phenotype transformation uses the DOTL
A standard GP system [6], may be described using Kozalgvelopmental process, generating a TAG derivation tree at
five-component scheme. We adapt it by adding a componeiich stage of development. This representation satisfies re
to describe development, and by extending the evaluatiqonirement 2 from Section Il because of the ‘feasibility’ pro
description to incorporate developmental evaluation. sTherty of TAG derivation trees, in that a tree legally grownrro
our specification consists of six components: represemiatian« tree is always semantically meaningful — it does not have
initialisation, development process, fitness evaluatimmetic to be 'completed’ in the same way as a CFG tree. However,
variation operators, and parameters. it still cannot be directly evaluated. As in the genotype-
1) Representation:DTAG3P uses the TAG-based DOTLphenotype mapping used in TAG3P [3], the TAG derivation
derivation trees as the individual genotype represemtalibe tree is used to create a second ‘intermediate phenotype’, a
user specifies a TAG lexical grammé¥,.., defining the Context-Free Grammar (CFG) tree, which is then transformed
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into an expression tree phenotype. As in standard GP, thigjorithm 1 Pseudocode for Initialisation Procedure
expression tree is directly evaluated for fitness. The ggrest  1: for i = 1...maw,,, do
to-phenotype transformation can be summarised in Figure 722 Randomly choose an-tree o;

3 Set axiomw equal to random predecessby in o
. 4: for j =1...npyues dO
Genotype: p| Intermediate Phenotype: 5: Set the default alteration rajg,q.,; for the rule
DOTL System LTAG Derivation Tree 6: Select a random predecessor fatle; = L;
# n stages 7 end for
8: for j =1...npyes dO
Phenotype: < Intermediate Phenotype: 9: Choose a random side= 1. ..maTperas
EXpI’CSSiOIl Tree CFG Derived Tree 10: Pick aB_tree at randomat) and set]l = ﬁt
, _ 11: for k=0...1—1do
Fig. 7. DTAG3P Genotype-to-Phenotype Mapping Process 12: Uniformly random pick a node e T with
13: at least one unused adjoining address
2) Initialisation Procedure: This is an algorithm for cre- 14: Randomly pick an empty addreasn n
ating an initial random individual; it is repeated until theis: Choose tree from the g-trees inGje,
population of sizemaxp,, has been created. Each indi-16: that can adjoin t@a
vidual is a DOTL system, containing,..s rules P = 1T Adjointtoain T
{P1, Py, -+, Py ....}. We denote the predecessors of thess: end for
rules asV = {Li,Ly,---,Ly,,..}. For each rule, we 19 for m =0...netter dO
randomly selectv = (aL): o € A, A being the set of initial 20: Adjoin randomL,, € V to a leaf location in T
trees inGy., (TAG), and L€ V. We construct the successor21: Set successor ofule;=T.
(RHS) S; of each rule by first randomly drawingrtrees from 22: end for

B, the set of auxiliary trees 6., (TAG) and assigning them, 23: end for

together with random adjunction locations, to the RHSPaf 24: end for

up to a random limit betweemingeias, - - - , MaATpetas; WE

then randomly drawi..,-, predecessors fror, and insert

them into the RHS, at random adjunction addresses from e Selection Mechanisms

frontier of the tree. Tournament selection is used because it provides a mecha-

TAG derivation trees are produced by decoding the DOTlism to handle a family of problems, such as DTAG3P uses.

system. A parametenaz;is. i used to specify the number|iyiduals are developed to stage 1, and evaluated on tte fir
of cycles of replacement of letters by their successors the problem. All ‘equal best' individuals are retained for sta@,

number of devel(.)pmer.ltal- p.r.lases).. the others being eliminated. The individuals are then dgpexd
We can describe this initialization procedure through the stage 2, and are evaluated on the second problem; again,
pseudocode in Algorithm(1). ‘equal best’ individuals are retained for stage 3, the restdp

3) Development ProcesS:he development process is as ireliminated. The process continues until only one individua
Figure 6, a multi-stage expansion of the DOTL system, eat@mains: it is then selected as the result of the tournantient.
stage being evaluated for fithess as described below. all possible stages have been evaluated (i.e. some indigidu

4) Staged Fitness EvaluationEach problem domain is &€ always_ ‘equal best' for each stage), then one of them is
represented, not by a single problem as in typical GP systerﬁgf)sen unlfor,mly rqndomly. ) _ o
but by a family of problems of increasing difficulty. At the Equal best requires some explanation. To avoid deC|d|_ng
first stage of development, the individual is evaluated ragjai tournaments by minute differences, when a later stage might

the simplest problem; at the second stage against the secBRdPI€ to make a more rational determination, we allow some
problem, and so on. slop’ in equality. A tolerance valué is one of the parameters

In more detail, the process expands the DOTL system E(f) the algorithm; individuals which differ from the true lhes

a given stage, interpreting the result as a TAG derivatiorY less thar are retained for the next stage.
tree, and converting it successively to a CFG parse tree— . -
and an expression tree. The latter is evaluated against ¥ quthm 2 Pseudocode for Selection Mechanism
corresponding problem exactly as in a typical GP systemh Eact * ¥ 1 . _ . _

individual undergoes a fixed maximum number.z;; ;. of 2 Wh'l,e |f,”(11’l) — Jit(I,7)| < 6 do
developmental stages (corresponding to the size of thdgrob s Lt 1

family). Note that the fitness evaluations of later stages of* gnd’whllg ) )

an individual’s lifetime might not be used in selection. yaz > If fit(l1,i) < fit(I2,7) then

evaluation would eliminate them from the computationakcos 6: I wins

For analysis purposes in the subsequent experimentabsecti 7: else _

we perform the evaluations, but also report the computation 8 I? wins

cost had we avoided them. o: end if
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Denoting the the fitness of individu&levaluated at stage b) Sub-tree mutation:(somewhat analogous to gene-
by fit(Is), for two individuals (3, I2), the comparison processlevel mutations in biology) deletes a random sub-tree in a
(for minimisation) can be formalised as the pseudocode fiandom rule (e.g82 : 1(Ls : 1)) replacing it with a newly
Algorithm 2. An example of this algorithm is shown ingenerated sub-tree (e.8:1 : 0(8s : 0(89 : 1(L4 : 0))):

Figure 8, comparing the individualg and I> with fitness
value arrays (corresponding to thelifferent stages)l; (10.05,

14.66, ...20.35), andl, (10.06, 14.66, ., 10.35). In this case, P31 1 L1 = B3 1 0(B11: 0(8s : 0(5o : 1(L1 : 0)) )
I would be chosen for further evolution. We note that this set of operators is fairly complete (for

_ fixed-size rule sets), able to adapt the rule sets on a variety
D. Genetic Operators of scales. They also have some level of surface plausibility

This subsection discusses the main genetic operatorsaimalogy to biological systems.
DTAG3P - the recombination operator, and three mutation3) Parameters: As with most evolutionary systems, it is
operators: internal crossover, sub-tree mutation andcaéxinecessary to specify a set of parameters to define the exact
mutation. configuration of DTAG3P. They are shown in Table Il. One
1) Recombination:Recombination chooses two individu-parameter needs some detailed explanation. In biology, it i
als,p; andp, from the population by the selection mechanisntlear that early developmental processes can become fixed,
It then uses them as parents to create two child individusalsand subject to lower rates of mutation than later processes

andc,. Suppose parent 1 has the following rules: (so that human embryos develop — and then reabsorb — gill-
like structures despite some 350 million years since ourtmos
Pii:Lp = B3:0(8y:1(Ls : 1)) recent ancestors actually used gills). To simulate thisun o

Py : Ly — Bio : 0(B1o : 0(Bro : 0(B7 : 0(B2 : 0(L1o : 1)))))  System, when a rule is used in a developmental stage which
and parent 2 has these: was used to select the parent (but is not the final such stage),
) it is reset to a lower value of adaptatipg,,q. Thus the child
Poy 1Ly — B4 :0(B2 : 1(B1 2 1(B1 : 0((Laz2 2 1)))) is more likely to inherit this rule unchangéd.

Poo i Lo —>ﬂ7 : O(ﬂg : 1(L7 : 1))
i -Th ber of ti tage: on
We provide the two operators ofile exchangeindsubtree  _ pofm”l;‘{i‘;ne;‘z’e?e”era 10N per stagemasy

. . maXpop
crossover The resulting effects on child 1 are shown below - The adaption rate: Padapt
(boxes show the parts of child 1 that differ from parent 1). - The reduced adaption rate: Pgood

Rule exchange: (somewhat analogous to _ Rule exchange rate: Prx
a) ge. ) - g9 - Sub-tree crossover rate: Px
chromosome-level exchange in biology) replaces one Rule interchange rate: PRI
entire rule body with the corresponding one from parent 2: - Sub-tree mutation rate: DPsub
- Lexical mutation rate: Diex
Py : Ly — B3:0(82:1(Ls: 1)) - Reproduction rate Peopy
Psy i Lo — ‘57 : O(ﬁg : 1(L7 : 1)) ‘ TABLE Il

DTAG3P EVOLUTIONARY PARAMETERS

b) Sub-tree crossover{somewhat analogous to gene-
level exchange in biology) randomly selects a sub-tree in a
rule from parent 1, and a sub-tree with the same root from aFor a developmental system, we also require further param-
rule in parent 2, and exchanges the sub-trees. This folloess eters to describe the developmental process. For DTAG8, th
general framework of sub-tree crossover in TAG3P [3]. are shown in Table III.

- The number of stages: Mazy fe
Py Ly = B2 0085 1] (B2 1(B1 : 0((Laz : 1)) ) - The number of rules: _ Mrutes
- The minimum number ofi-trees in a rule:  ming
P33 : Ly = B10: 0(B10 : 0(B1o = 0(B7 : 0(B2 : 0(Laz2 = 1))))) - The maximum number of-trees in a rule: maxg
. - . - The number of predecessors in a rule RHSn,..
2_) Mutation; Mutat|on chooses a pa_rem using the S€-~  _ The minimum dﬁference in each stage: sl
lection mechanism, and creates a childhrough applying
. ) . TABLE Il
one of the mutation operators defined below. We provide two DTAG3P DEVELOPMENTAL PARAMETERS
mutation mechanisms causing change on varying scales: rule
interchange and sub-tree mutation. Given parent 1 as hefore
we describe these in turn.
a) Rule interchange: (somewhat analogous to )
chomosome-level mutations such as duplication, deletidn, Meta& Mechanisms
fusion in biology) randomly interchanges the RHS of rules Previously (in Subsection II-C) we detailed a set of require
in the parents (it is thus a very large scale operator —naents that our developmental evaluation system needsfiio ful
macromutation): As described so far, DTAG3P meets all but the last: it has no

mechanism by which the specific stage of development can
P3y Ly —{ 10 : 0(B1o : 0(B1o : 0(B7 : 0(B2 : 0(Li2 = 1))))) ‘ y P g P

4 - . .
Pao : Lo — -0 “1(L- - 1 ‘ The application rates of operators sum to 1.0, so we dorectir specify
321 L2 = : 008 : 1Ls : 1) Peopy, but derive it frompeopy = 1.0 — (prx + Px + PRI + Psub)-
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fit(I11) A fit(12)

/ 1467 \
/ 15.36 \ / 1836\
/ 19.04 \ / 29.04 \
/ 4.32 \ / 2.42 \
/ 19.45 \ / 9.43 \
/ 20.35 \ / 10.35 \

Fig. 8. Example of Selection through Developmental Evabmat

In this case, at stage 3, fit(123) < fit(I13)
so 12 would be chosen for evolution

feed back into the process. Such a mechanism is desirable Xqf,, .04 5)41; ONCe an MV has been evaluated at a particular
two reasons: stage, it retains that value in subsequent stages, rathar th
1) Biological plausibility — almost all biological devel-being re-evaluated at a later stage.
opmental systems do incorporate such a mechanism;
without such a mechanism, we probably would not VI. EXPERIMENTS

recognise a process (for example, aggregation of unicel-ln this section, we first describe the problem families

5 lglar t(_)rglanlsms Into a coI?ny)t asltlruly dzvlelopmental.that we used in our layered learning. We then describe the
) I rac |cat neI(I:essny_a most hatural fayere 'ear.”'”gpro xperimental settings we used to compare DTAG3P with
ems naturally provide — or in many cases requiré - SUGAGap ang standard (Koza-style) GP. Finally, we describe

a mechanlgm. !:or example, if the system has t_o Iea,ggme variants which were used to test the importance of
a polynomial)_;_, z°, at stages, it seems only fair to different components of DTAG3P
give the system knowledge of the value ©fBut even '

more critical, if the system is required to learn parity
of size s at stages, it should have this information to A. Problem Domains
ensure that it does not generate expressions containing\ number of problem domains have been used for testing
variablesX;,t > s that cannot be evaluated at stage in this work: symbolic regression problems, booleaparity
Missing variables may be handled in other ways. In [97hroblems and ORDERTREE problems.
we usedundef to deal with ‘undefined’ variables during 1) Symbolic Regression of a Polynomidah symbolic re-
evaluation. However this imposes a huge burden on the dgession, the system is given a set of points to fit (as in
velopmental system, because in the early stages of learniligear and other kinds of regression — polynomial, logistic
almost all variables are undefined, so that it is very difficuétc.), and the system is free to construct any functional
during initialisation to generate individuals that haveedimed form it chooses from its basic stock of functions. In this
fitness. While complex penalty mechanisms could be intrproblem, the function and terminal sets consistedFbf=
duced, meta-variables seem to provide a more intellegtua{l+, —, x, /, sin, cos,ep,lg} andT = {z}. The target poly-
satisfying solution. nomial symbolic regression family was the family:
In this system, we provide two such mechanisms: meta-

constants and meta-variables. o=z
a) Meta-constants (MC):are treated somewhat like B = 2+
ephemeral random constants (ERCs) in standard GP. First, Fy = 3+22+2
an MC C is sampled from a distribution just as an ordinary
ERC, but for an MC, the distribution is limited to the range g 5
Fy = z294+z2°+...+2°+2°+=x

—mazy;fe ... maxyfe —1. TO ensure that the actual value,

is computed agC' mod s) + 1 when it is being evaluated at

stages (when development proceeds to stage 1, MCs that Fy(z) = ixl 1)
were evaluated at previous stages retain their previoussal 3 p
b) Meta-variables (MV):are analogous, but the value of Fii(z) = x-(1+F(x)) @)

an MV is a variable, rather than a constant. Given an MV

V, its corresponding indeXy is evaluated at evolution time In these examples, the data consisted of 20 points sampled
as for MCs — that is, its value is sampled from a distributioaniformly randomly from the interval (-1,1).
over—mazife - . - maxy; e —1. As with MCs, when itis being  In typical experiments, GP scales up #6, or F3; to
evaluated at stage it will produce the corresponding variableunderstand the scaling of DTAG3P, the experiments were
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continued toFy. This problem family was chosen becauseontribution is passed to the parent. If the value is equal to
it has been widely studied, and is especially well-suited tts parent, its left child is evaluated recursively. In adises,
layered learning. We note that the problem family satisfies tthe fithess contribution of the right child is zero, so that th
recurrence relation 2, so that each problem constituteda stight subtree acts as an intron. The process is fully detaile
stantial building block for the next, and the progressiamfr in [100]. Figure 9 shows examples of fitness calculations for
each stage to the next requires exactly the same mechaniem3-ORDERTREE problem (top) and one of many optimal
2) Symbolic Regression of a Trigonometric Expression:solutions (bottom).
The second target family was a little tougher, requiring The ORDERTREE problem family used in this paper was
the system to find a changing trigonometric relationship. &(1),0(2),...,0(6), whereO(:) denotes the ORDERTREE
trigonometric symbolic regression problem family was @ros problem of sizei.
for similar reasons:

o, = sin(z) B. Meta Mechanisms

dy = sin(2-2) No meta mechaqism was Qeeded for the simple poly_nomial
By — sin(d-2) problem. For the trigonometric problem, where the vaius
important for solving the problem, the system was provided
with meta-constants.
dy = sin(28-1) In the polynomial and trigonometric problem families, ther
is only one domain variable;. By contrast, in the Boolean-
parity and ORDERTREE problems, each nes-(1) problem
®,(z) = sin(2°71 - 2) (3) introduces a new variable,; that cannot be meaningfully
. . . evaluated in the precedingproblem. In these problems, we
This problem family also used 20 sample points, but Samplﬁgve provided meta-variables to eliminate the difficulty.
from the range—m, 7).
3) Boolean Parity: The k-parity problems constitute a long- . )
studied family of difficult GP benchmarks. The even (oddy- Comparisons Between Different GP Systems
task is to evolve a function returning 1 if an even (odd) The first stage of the experiments compared three different
number of the inputs evaluate to 1, and 0 otherwise. Langdsystems: GP (a basic Koza-style tree-based GP system [6]);
and Poli observed in [98] that the task is extremely seresittDTAG3P (DTAG - the system described above), and TAG3P
to change in the function set, and that the commonly-us@tree-based GP system, using as its genotype the same TAG
set OR,AND, NOR, NAND omits the usefulXOR and representation as DTAG3P’s intermediate phenotype, bagus
EQ building blocks. Inspired by Poli and Page [99], wean evolutionary process identical to that of GP). The three
chose the function seAND,OR, XOR, NOT as a suitable systems were evaluated on the four problem families from
compromise — containing the XOR building block, unlike th&ubsection VI-A.
first function set, but tougher than Poli and Page’s set (whic 1) Parameter SettingsTo evaluate their performance, we
contained all binary Boolean functions). The problem fgmilused a fixed budget of function evaluationg{.,.;), with
seems particularly well-suited to investigating scaigisince the population sizenaz,,, = 250, and the max generation
standard GP scales up k&8, but not beyond. size being adjusted to maintain this budget. This is impurta
4) ORDERTREE:The ORDERTREE problem, first intro- for fair comparison, because DTAG3p uses multiple staged
duced in Hoang et al. [100], was designed with an awaren&s&luations; thus ovemaz4., generations, it will conduct
of Daida’s problem of structural difficulty [101], and Sonumepa = Maxgen - Maziife - Maxpop function evaluations.
it attempts to remove the shape bias in optimal solutionldence for a fair comparison, the GP and TAG systems should
Hoang et al. experimentally verified that the difficulty okth be allowed to run fomax ge,, - maz;;r. generations.
ORDERTREE problem can be tuned both by increasing theThe detailed parameter settings are shown in Table IV. The
size of the problem, and by increasing the non-linearityhim t GP and TAG3P settings are typical for these problems. The
fitness structure. In essence, the ORDERTREE problem i©D3aAG3P settings were found by trial and error. We found
natural analogue of the ONEMAX problem [102], a populathat high probabilities for the more disruptive operatarsg
genetic algorithm test problem. The function set and teaiinexchange and rule interchange) led to poor performance, but
set for ORDERTREE of sizen are defined as: F(T)%'1", that performance was insensitive to the rates of other oper-
‘2’, ..., 'n" }. Both the function nodes and the terminal nodestors. The DTAG3P lifetime was determined by the problem
are also labeled with numbers from the $&t2,...,}. Note definition (the number of developmental stages must eqeal th
that all the functions are of arity 2 (i.e, each function has t number of problem layers. Other parameters (especially,
arguments). The (maximising) fitness evaluation is based oand max ), were also determined by experiment. With the
‘left-neutral-walk’ procedure: ‘If the value of a node iswel exception of§ and n,..q, they were not very sensitive, and
to that of its parent node, the fitness calculation contirlmes any reasonable values work,,,.; needs to be determined
visiting the left child. If that new node’s value is less thig by preliminary experiments for each problem (a value of 1
parent, the process terminates [...], and no fitness coiitib is a reasonable starting point, but it may not work in all
results, the whole subtree being treated as an intron. If tbases, depending on how fast the solution complexity needs
node value is greater, the subtree is evaluated, and theditn® increase with problem layer / developmental stage). The

with the general form
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Fig. 9. 3-ORDERTREE Examples — top: trees of various fitreslsettom: an optimal tree. The nodes shown under brokes ktk as introns.

TABLE IV . : : . .
EVOLUTIONARY PARAMETER SETTINGS settings for the DTAG3P system in detail; we discuss thisdss

WHERE DIFFERENT VALUES FOR DIFFERENT PROBLEMS SEPARATED BY stasies — more fully in Subsection IX-C.
2) Problem Grammars:The elementary TAG tree set for

GP | TAG3P | DTAG3P the polynomial problem solution space (used inTAG3P and

gr?ble_ms _Fr’olynomiaI/T rigon%metriC/Pafity/ORDERTREE DTAG3P) was previously presented at the top-left of Figue 6
election ournament, size . T

Recombination| Rule, Subiree Exchange Since TAG grammars may be un_famlllar to many readers,
Mutation Rule Interchange, we also present in Table V the equivalent CK&,

Subtree and Lexical Mutation
# of Runs 30 TABLE V
NUMeyqal 227,250 / 1,359,000 / 202,000 / 126,2%0 CFGFORPOLYNOMIAL SYMBOLIC REGRESSIONPROBLEM
MaLpop 250 / 1000 / 250 / 250
Matgen 909 7 1359 / 808 7 505 101/ 1517 101 7 107
MAZX depth 30 N/A N/A G1 = (V17 Ty, P, Sl)
MAT 5720 N/A 1,000 NA 51 = EXP
PX 0.9 N/A i = {EXP,PRE,OPVAR
Pt 0.1 N/A T = {xsincos,lg.ep+- Y
Deopy 0.1 N/A P =
mazife N/A 9797875 EXP — EXPOPEXP| PREEXP| VAR
Nrules N/A 12 or = H4|—|xl/
ming N/A 1 PRE — sin|cos|lg|ep
mazg N/A 7 VAR — =
Npred N/A 1/1/1/<4
Padapt N/A 1.0
Pgood wﬁ Oboi The grammar for the trigonometric problem is identical to
PRX . . . . .
ox N/A 0.24 that in Figure 6 with two exceptions
PRI NjA 002-1 1) The unary operators cos, ep and Ig are not available as
gs"" “,2 olog lexical elements (that isfyg ... 512 are omitted from
copy :

N/A | 0.00170.001/0.0017 0.5 the grammar)

2) The variable X is supplemented by a second lexical
item, the constant ONE (that is, every remainjhgree,

) . together with thex tree, has a duplicate in which the
tolerance parameter was particularly sensitive, and needed

! ; variable X is replaced by the constant ONE)
to be separately determined for each problem domain ([}1 q he CEG Table V.
undoubtedly depends on the problem; in particular, it stho Is corresponds to the 2 seen in Table

almost Certamly depend on the scale of fitness Values)' we eX5The operator / is protected division (i.e. returns 1 whendd&eominator is

amine the Importance of correctly Settlﬁgm OW experiments 0), ep is the exponential function, and is the protected logarithm function
reported below. However we have not examined the parameteturns the log of the absolute value, but returns 0 for it 0).
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TABLE VI TABLE VIl
CFGFORTRIGONOMETRICSYMBOLIC REGRESSIONPROBLEM CFGFORORDERTREE ROBLEM
G2 = (V2,T2, P, S2) G4 = (Va, Ty, Py, Sy)
Sa2 = EXP S4 = EXP
Va = {EXP,PRE,OP,VAR Va = {EXP,OP,VAR}
Ty = {x,ONE,sin,+,-,*,l} Ty = {(El y L2y ey :Bk}
Py = Py =
EXP — EXP OPEXP| PRE EXP| VAR EXP —  EXP OPEXP| VAR
oprP =+ |- x| OP = 1]2]...|n
PRE — sin VAR — 1]12]...|n
VAR — z|ONE

and developmental feedback (meta mechanisms). We argued
For the k-parity problem, we use the TAG grammar inn the introduction for synergy between these components:

Figure 10, corresponding to the CR& in Table VII. that the interaction between these components would bring
greater benefits than the individual components. To ewaluat
a B1, B3, B5 B2, B4, p6 the effects of the first three (we plan to study the fourth
BOOL BOOL BOOL comprehensively in future work), we introduce three furthe
\ / [\ / [\ 'intermediate’ treatments. These treatments combine sbate
VAR BOOL OP BOOL* BOOL* OP BOOL not all, of these components. The systems are:
/ | | | | « GPgen This treatment is designed to address the issue

that good performance exhibited by DTAG3P might arise

T T AND|OR|XOR AND|OR|XOR T . - h
T = (X1, X2,..., Xk) simply from the layered learning process — the increas-
87 P1, P2, ... P12 ing difficulty of fithess functions — independent of the
BOOL BOOL developmental process. In this treatmefit,is used for
I\ I\ the firstmax,e, evaluations, ther¥, and so on; more
PRE BOOL PRE BOOL* formally, for i from 0 to n-1, generation (ihazge,) to

| generation (i+1)fnazgen - 1 uses fitness functiof; ;.

| Otherwise, the treatment is identical to GP.

NOT Li (i=1,...,Nrutes) « TAGgen This treatment addresses the hypothesis that the
performance of DTAG3P arises from a synergy between
layered learning and the TAG representation, and the
developmental process is incidental.

« DTAGFn all: This treatment addresses the converse is-

Fig. 10. TAG Elementary Trees fdt-Parity Problem

TABLE VII sue, that DTAG3P performance might arise simply from
CFGFORK-PARITY PROBLEM the developmental mechanism having an opportunity to
find small solutions, without any need for changing fitness
g; - (E‘%;T&R”S” functions (i.e. for layered learning). This treatment uses
Va = {EXPPRE,OPVAR the multi-stage evaluations of DTAG, but each stage is
T = Az,z9,... 2} evaluated using the fitness functiép, instead of varying
s EXP - EXPOPEXP| PREEXP| VAR through the family; to £,.
OP  — AND| OR| XOR The three treatments above were tested on all four prob-
\Ijig — NOT lem domains: polynomial symbolic regression, trigonomsetr
= T2 T symbolic regression, boolednparity, and ORDERTREE.
For the ORDERTREE problem of ordét the CFG isG, VII. RESULTS

shown in Table VIII, resulting from TAG elementary trees We examine the performance of the three systems (GP,

corresponding to those in Figure 10, but with the lexicon ANDAG3P and DTAG3P) on each of the four problem families,

| OR | NOT in the first and second kinds ¢f trees, and the comparing them with three other treatments (GPgen, TAGgen

lexicon z1, z2, ...,z in the fourth, replaced by the lexiconand DTAGFnall) intended to illuminate the behaviour of

1,2,...,k, and with the third kind of3 tree omittec DTAG3P. Overall success rates are summarised in Table IX.
Figure 11 depicts the cumulative frequencies of success of

D. The Importance of DTAG3P Components the various systems (systems not achieving any successes ar
omitted from the figure for reasons of clarity).

B.y comparison thh standard GP.’ DTAG3P introduces four From both tabular and figure data, we can immediately see
major innovations: the represen.tatlon (TAG trees), th.eeuevthat only DTAG3P performed well on all these problems. GP
opmental process, layered learning (developmental evanja and TAG3P were somewhat successful on 6-ORDERTREE

8in this grammar, functions and terminals are both labellgchbmbers, (though much less so than .DTAG3P)! and DTAGFn-all per-
the functions always having arity 2. formed acceptably on 8-parity; apart from these, all system
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TABLE IX . '
SUCCESS RATES ONPOLYNOMIAL (POLY)AND TRIGONOMETRIC (GP, TA_G3R DTA_G3P7- Since the fitness scales for the two
(TRIGO) SrMBOLIC REGRESSION 8-PARITY AND 6-ORDERTREE symbolic regression problems are very compressed, we also
(6-ORDER) show a more expanded view in Figure 14. All confirm that,
while GP and TAG3P show better performance early (because
POLY | TRIGO | 8-PARITY | 6-ORDER DTAG3P at that stage is concentrating on the simpler problem
DTAG 100% | 53.33% 86.67% 53.33 ; ; ; : ;
DTAGFTAT 0 . =% S in the_famlly, SO its performance on the final problem is
TAG 10% 0% 10% 33.33% essentially randpm), thel_r performance stagnate_s,_whm t
TAGgen 13.33% 0% 0% 0% of DTAG3P continues to improve, eventually providing much
GP 0% 0% 6.61% | 26.67% better performance.
0, 0, 0, 0, . . .
GPgen 0% 0% 3.35% 0% Further understanding may be gained from seeing the me-

dian performance in each generation. Figure 15 shows these,
for each of the three main treatments. Again, in most cases,

other than DTAG3P were uniformly unsuccessful on thed%® See a similar behaviour, with DTAG3P displaying poor

problems. This is not surprising — they are tough problems€arly performance, but eventually yielding far better fesu
tEan the other methods. We carried out similar studies on

Our hypot_he3|s about the behawogr of DTAGBP is ng e other treatments (GPgen, TAGgen, DTAGHH), and saw
merely that it performs well, but that it learns in a layere S .
Very similar results in all cases.

incremental fashion. Figure 12 elucidates this furtheowsh
ing the cumulative success of DTAG3P on the layered sub-
problems from which (we posit) it builds its overall solut® A, Sensitivity ta

In all cases, DTAG3P learnt in a layered, incremental faghio DTAG3P introduces a number of new parameters; most

using the solutions of simpler problems as stepping stomes _t . L ;
9 pier p ppINg are not particularly novel (rates of applications of diffiet
solutions to the larger-scale problems.

c lative f ¢ h q " toEerators etc.) so that previous experience in evolutionar
umulative irequency of success, however, does not g mputation can guide their setting. However omng, is

the whole story. It is important, also, to see the change

in fitness during a run. Figure 13 shows the med'an (OVerrTy avoid results being heavily skewed by outliers, all rsstéported here

all runs) of the best fitness for the three main treatmentse the median rather than the mean.
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TABLE X

SUCCESS RATES ODTAG 3PWITH VARYING § of 6 was much less than with large values.

However it is clear that this area warrants further inves-
tigation. Since we have no particular reason to expect the

$=0.000001] =10 | 6=5.0 !
Polynomial 86.67% | 100% 0% optimal value of§ to be the same at each developmental
Trigonometric 53.33% | 63.33% | 33.33% stage and problem layer, adaptive mechanisms would be worth

exploring.

. - VIIl. SIMPLICITY AND REGULARITY
completely new, since it directly relates to the structufe o _ )
the system. It is also a core parameter in our system, sincén the preceding analysis, we concentrated on performance

it controls the interaction between the developmental gssc iSSues: how well did DTAG3P solve problems. But in our ini-

and the problem layers. tial discussion, we hypothesised that developmental atialtu
We performed a test of its effect on the performance gyould result not merely in better and more scalable solstion

DTAG3P (on the two symbolic regression problems only?,Ut better structured, more regular ones. Did this occur?

varying it over a wide range. Our previous discussion of

layered tournaments suggested that too small a value cofiidSolution Visualisation

lead DTAG3P to overfit to simple problem layers at early One way to determine this is to examine the solutions by

stages of development, rendering it difficult to recover angle. Figure 16 represents a typical solution to the 8-parity

build performance on more difficult problem layers. On thgproblem, as found by DTAG3P. Anyone familiar with GP

other hand, too large a value might also damage performanseiutions will be immediately struck by two things: its sinal

by failing to ensure good performance at any level. This iize (19 nodes — typical solutions found by GP and TAG

what we found:y needs to have an intermediate value. respectively contained around 200 and around 1,000 nodes)
At the moment, we have no a-priori way to predeterminend lack of introns; and its elegance and repeated regular

a suitable value. The value @f for a new problem family patterning. In the corresponding DOTL system, we can direct

should be determined by preliminary experiments. The tesulind an encoding of the recurrent expressignXOR F;_;.

in table X suggest that a bias toward smaller values migtd sav As in biology, we see the emergence of repeated dupli-

time, since the deterioration in performance with smalleal cations of structure, though nothing in the system directly
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requires such duplication. This systematic duplicationl arrees as development proceeds (the stage 9 tree in this case
regular structure doesn’t appear in these systems unlegs tis too large to draw). Finally, in the expression tree, we see
incorporate the delicate interplay of layered learning artle repeated regular pattern+ = - F;, i.e. the appropriate

development provided by the layered tournament. recurrence relation.
Similar analyses have been conducted for other problems,
TABLE XI with similar results, but are omitted here for brevity.

AN EXAMPLE OF A SOLUTION OF DTAG3PON THE POLYNOMIAL SERIES:
DOTL-REPRESENTATION

Py: Li — B3:0(B2:1(Ls:1)) . . ..
Py Ly 5?030( o 0(5610:0( Bt 0( B2 O L1a* 1))))) B. Computational Effect of Simplicity and Early Death

Py Ls — Bs:0(L12:0, B1:1) In the computational experiments, we used the same number
ot Li» = fat O( Lz: 0) of function evaluations to compare the different GP systems
Pyt Lay — o O Ba: 1( Bs: O( Ba: O( L11: 1)))) But was this really fair? Firstly, in equilibrating DTAG3®'

P2t Liz = P61 0(L12:0, B2 1) computational cost with the other systems, we assumed that

DTAG3P developed every individual to its final stage. But in

Let us look further at this, by examining in detail a solutiofiact, the tournament evaluation that DTAG3P uses does not
found by DTAG3P on the polynomial problem family. Tatequire this; if lazy evaluation is used, less fit individsiare
ble X1 shows the key part of the DOTL rules of the genotypeinlikely to be evaluated through all stages — in effect, they
while Table XII depicts the corresponding genotypes andie early’. Second, because DTAG3P individuals are much
phenotypes in linear string format for development stages simpler than their competitors, they may cost less to evalua
2, 3 and 9. These tables refer to the grammar from Figureli, most GP settings, evaluation cost is directly proposion
which has only one initial treepg). to individual size (or at minimum, to the size of the compo-

Figures 17, 18 and 19 show the corresponding intermediaitents actually executed). We decided to take full account of
and final phenotypes: TAG derivation trees, CFG derivedstrethis issue, by comparing the total number of evaluations of
and GP expression trees. In the TAG tree, we see the regudapression nodes used in the fithess comparisons. Table Xl
pattern:3s:0(L12:0,51:1). This results in the circled structureshows the result for the parity problem; even though DTAG3P
in the CFG tree, which is then repeated into larger and largeund many more solutions than the other systems, it found
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TABLE Xl

Number of Function Evaluations

INTERMEDIATE AND FINAL PHENOTYPES OF ANEXAMPLE DTAG3P SOLUTION FORPOLYNOMIAL PROBLEMS

19

S $AG ao: 0(B3: 0(B2: 1(Ls: 1)))
rees
CFG  EXP(PRE( Ls), EXP(EXP( EXP(VAR( X)), OP(sub) , EXP(VAR(X))) , OP(add) , EXP(VAR(X))))
Trees
GP add(sub( X, X), X)
Trees
Sa $AG ap: 0(B3: 0(B2: 1( Ls: 1(Bs: 0( L12: 0, $1:1)))))
rees
CFG  EXP(EXP(VAR(X)), OP(add) , EXP( EXP( PRE( Ls) , EXP( EXP( EXP(VAR(X) ), OP(sub) , EXP(VAR(X))) ,
Trees OP(add), EXP(VAR(X)))), OP(mul ), EXP( PRE( L1s) , EXP(VAR(X)))))
> add( X, mul (add(sub(X, X), %) . X))
Trees
S3 $AG ao: 0(B3:0(B2: 1( Ls: 1(Be: O( L12: 0( Bs: O( L12: 0, B1:1)), B1:1)))))
rees
CFG  EXP(EXP(VAR(X)), OP(add) , EXP( EXP( PRE( Ls) , EXP( EXP( EXP( VAR( X)) , OP( sub) , EXP
Trees (VAR(X))),OP(add), EXP(VAR(X)))), OP(rmul ) . EXP( EXP( VAR( X) ) , OP( add) , EXP( EXP
(PRE( L12), EXP(VAR(X))), OP(mul ), EXP(PRE( L12) , EXP(VAR(X)))))))
® add(X, mul (add(sub(X, X) . X), add(X, mul (X, X))))
Trees
So $AG ao: 0(B3:0( B2: 1( Ls: 1(Be: O( L12: 0( Bs: O( L12: 0( Be: O( L12: 0( Be: O( L12: 0( B6: O
rees
(L12:0(Be: 0( L12: 0( Be: O( L12: 0( B6: O( L12: 0, B1:1)), B1:1)), f1:1)),
B1:1)), f1:1)), B1:1)), f1:1)), f1:1)))))
CFG  EXP(EXP(VAR(X)), OP(add) , EXP( EXP( PRE( Ls) , EXP( EXP( EXP( VAR( X)) , OP( sub) , EXP
Trees (VAR(X))), OP(add), EXP(VAR(X)))), OP(mul ) . EXP( EXP( VAR( X)) , OP( add) , EXP( EXP
(PRE( L12) , EXP(VAR(X)) ), OP(mul ) , EXP( EXP( VAR( X)) , OP( add) , EXP( EXP( PRE
(L), EXP(VAR(X))), OP(mul ) , EXP( EXP( VAR( X) ) , OP( add) , EXP( EXP( PRE( L12) , EXP
(VAR(X))), GP(mul ) , EXP( EXP(VAR( X) ) , OP( add) , EXP( EXP( PRE( L12) , EXP( VAR
(X)), OP(mul ), EXP( EXP( VAR( X)), OP(add), EXP( EXP( PRE( L12) , EXP(VAR(X))), OP
(mul ) . EXP(EXP(VAR( X)), OP( add) . EXP( EXP( PRE( L12) , EXP(VAR(X)) ), OP(mul ) . EXP
(EXP(VAR(X) ) , OP( add) , EXP( EXP( PRE( L12) , EXP(VAR(X)) ), OP(mul ) , EXP( PRE
(L12), EXP(VAR(X)))))))))))))))))))
> add( X, mul (add(sub(X, ), X) , add( X, mul (X, add(X, mul (X, add(X, mul (X, add( X, mul
Trees (X add(X, mul (X, add( X, mul (X, add(X mul (X, %))))))))))))))))

them at far lower computational cost — an order of magnitud® Regularity of Solutions
less, except in the case of DTAGHII.

TABLE XIlI
MEAN NUMBER OF NODE EVALUATIONS PER RUN

8-Parity
DTAG 9294835.3
DTAGFn_all 19066168.8
TAG 142900418.1
TAGgen 84761732.3
GP 208319791.0
GPgen 1249442475

The solutions found by DTAG3P are smaller, and certainly
look simpler, than those found by other systems. But are they
really more regular? To answer this question, we made use of
the compression metrics briefly outlined in Subsection |V-C
and fully detailed in [88]. We applied these metrics to the
output of four of these treatments (GP, TAG3P, DTAG3P
and DTAGFnall). For the purposes of fair comparison, it
is important to compare like with like; fortunately, all ge
systems generate GP expression trees as their final phenotyp
so we can directly compare the complexity of these exprassio
trees. A second issue also arises in this case; individuals a
of different sizes — perhaps different-sized individualigm
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be more or less compressible, independent of their regularputable. But in defence of this issue, we note that XMLPPM
Please see [88] for a detailed discussion of this issue, amds developed for XML compression, with no awareness at
of the normalisation mechanisms we have used to overcothe time that it would be applied to the compression of GP
it. In the results detailed here, we only look at the resultsees.

of the polynomial symbolic regression problems, but simila

behaviour is found in all the problems studied in this paper.
IX. DIscussION

Figure 20 shows the evolution of individual regularity _
throughout the runs. We can see, firstly, that DTAG3P geA- Synergies between Developmental Components

erates much higher regularity (larger values indicate é1igh |, o introduction, we proposed that a specific combination
regularity) than the other systems, whether in the raw coqg, gevelopment, evaluation and layered learning might lead
or to an even greater extent, in the trees simplified t0 they ynergies. That is, better and more scalable solutions to
effective skeleton. DTAGFrall (shown as DTAGF@allin the ¢y milies of problems might result, with the solutions being
plots) does start off with an initial high degree of regulari 1,41 simpler and more regularly structured. In the everis, th
(initially bearing out the widely-accepted view that d&@l 155 heen borne out. As we saw in Section VII, DTAG3P is able
mental systems, on their own, can promote regularity), bi§ rejiaply solve problems — symbolic regression for higtiesr
this regularity is rapidly lost. In the end, DTAGEall actually polynomials and trigonometric functions, parity probleams
generates_ lower regularity than TAG3P. Standard GP gexergyr pERTREE problems — at scales that are far beyond the
the most irregular phenotypes of all. capabilities of standard GP or of TAG3P. Section VIII showed

It should be noted that these metrics rely on the underlyitigat it is able to do so while using an order of magnitude
model of the specific compression method — in this cadess computational resources (measured in node evalsation
XMLPPM. Potentially this could be unfair, if XMLPPM was generated solutions that were far smaller, and also motdaeg
particularly biased to detecting the kinds of regularitieat and structured. It is also worth noting, in passing, that bg-a
DTAG3P embodies, while ignoring those produced by otheroduct, DTAG3P gave us, effectively for free, solutiongtte
systems. This objection is unavoidable, whatever methoddarlier problems found during layered learning. For exampl
used to measure regularity — true regularity metrics, famex 86.66% of runs gave us solutions to the 7-parity problem,
ple based on Solomonoff-Kolmogorov complexity, are uncomvhich is also difficult for TAG and GP.
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Our other experiments in Section VII showed that theggmrameters). However we note that in other work, we have
results were not the result of the TAG representation, demonstrated the effectiveness of duplication operatotke
of layered learning, or of both in combination, nor weraon-developmental TAG3P system [103].
they purely the result of the developmental process or the
DOTL genotype representation. The combination of all thege Assumptions and Limitations
components was required to solve these problems, at least i

the contexts proposed in this work. l:i'he DTAG3P system proposed here has a number of

. . ) potential limitations.
Overall, we believe we have validated our main argument. rqgremost is the layered learning requirement for a family

That is, that an organism which overfits to the problem &k yejated problems, rather than a single problem. DTAG3P,
one stage will find it difficult to ada_pt later, and WI|| be OUtand indeed the whole program advanced here, is intimately
competed by more adaptable individuals — organisms that,dRtwined with layered learning. When layered problems are
accordance with parsimony theory, will on average be simplgo available, it is inapplicable. This is really only antesif
and more regular. DTAG3P is viewed as a competitor for GP. We don’t see it
In this work, we did not test whether the main regularitythis way. For the many problems naturally present without
promoting mechanism we identified in biology (duplicationlayering; DTAG3P is simply inapplicable. However many
would have such an effect in DTAG3P. The main reason wasther real-world problems have natural layered structures
lack of need: regularity emerged (as we predicted) withoBtxamples range from robot behaviour to multi-agent leanin
any explicit regularity-promoting operator. Adding dwgaltion from visual processing to circuit design or robot soccef,[37
operators would muddy the waters. An additional reasoieesin38], [40], [41], [104]. For these problems, DTAG3P can take
it would be an interesting exercise to compare the systeim wadvantage of the layered structure much more effectively th
and without duplication operators, is programming comityex GP or related systems.
Adding duplication operators would make an already-comple Second is its complexity. However the core ideas — of
program unwieldy (besides requiring further operator ratmmbining layered learning with development — are indepen-
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L12:0 B1:1
K oo some of the good performance of DTAG3P was independent of
112:0 11 ‘ the use of meta-variables and constants. At the other egfrem
| B0 meta-variables were crucial to the incorporation of lagere
ﬁ A learning into the developmental process for parity and OR-

DERTREE problems. Without them, there was no mechanism
for layered learning to take place, so no comparisons with
and without meta-variables was feasible (we were unable to
get penalty approaches to work, because we could not get
the initial population to generate sufficient feasible widiials
for evolution to proceed). However it is clear that in some
dent of the particular implementation. For instance, irergc cases, meta-mechanisms do add a great deal to the system —
work, McPhee et al. [25] adopted a similar approach fd@r example, we were unable to find good solutions to the
their linear GP system with N-gram probabilistic learningrigonometric problem family without them.
Their results were consistent with the findings in this paper
in that the combination of layered learning, with evaluatio
during the developmental process, was vital for the sucegs
of their DGP system. More generally, these ideas couldA wide range of extensions of this work are possible.
equally readily be implemented in any other system thatccoul Most immediately, it is clear that the combination of compo-
support the requirements of Subsection 1I-C, Grammaticaénts, for which we use the name evolutionary developmental
Evolution [105], Cartesian Genetic Programming [106] angvaluation (EDE), could be readily applied to a number of
PushGP [107] spring immediately to mind. other GP systems. We hope to promote and collaborate with
The DTAG3P system introduces a number of new pararsdch work in the near term.
eters, potentially increasing the cost of initial tuningdahe  This paper has compared DTAG3P with tree-based GP
risk of overfitting. While we have not yet carried out detdile systems, because we wished to concentrate on the effects
parameter sensitivity studies, our experience so far siglgat of evaluation during development, which in turn required
it is not difficult to choose good values for these parameterss to reduce the effects of differences in search space size,
Other work not reported here [108] suggests that overfiigngfitness landscape complexity etc. These effects can be very
not one of the failings of DTAG3P. substantial [3], [109]. Despite these risks, we hope toycarr
The effects of the meta mechanism have not been invegtiit a comparison with other developmental systems, edpecia
gated in detail in this study. In the case of the polynomidéihear-GP based ones that can handle the same or similar
problem, meta-mechanisms were not used, so that at lgasiblems, as soon as is feasible.

L12:0 B1:1 L12:0 B1:1
(Sa)Fs =23 +a22+2 (So)Fo=2"+...+2%+x
Fig. 17. TAG Tree Solution for Polynomial Series

Future Extensions



TRANSACTIONS ON EVOLUTIONARY COMPUTATION CLASS FILES, VOL?, NO. ?, ? 2010 23

(Sl)Fl =T

(S3)Fs =23 + 22+
Fig. 19.

The meta-mechanism is a prime area for further explorati
Topics of interest include formalisation in terms of higher®

+

-
N

N
A

X X

—\
—\
N\
A
A
A

X +

/\

X o*

A

X X

(Sg)F9:x9+...+x2—|—x

GP Expression Tree Solutions for Polynomial Series

DOTL system regularly — in fact, almost universally — evalve
recursive grammars. Thus one very interesting possibility
is to present DTAG3P with increasing depths of recursion
in its problem instances. DTAG3P will hopefully evolve a
DOTL system implementing that recursion. With our current
mapping strategy, the recursion is not explicitly avaiabl
at the phenotype level. But once the recursion is explicitly
present in the genotype, it should be feasible to use rexmursi
preserving transformations to map the DOTL-level recursio
to the genotype level, thus providing a new mechanism for
evolving recursive programs.

X. CONCLUSIONS

This paper presented a brief survey of current research on
modularity and regularity in evolutionary systems, in by
and in artificial life, with emphasis on their role in evolutiary
developmental systems and developmental genetic program-
ming systems.

Based on this perspective, we investigated a combination
of abstractions from natural mechanisms. We investigated
whether this combination, EDE, led to synergies, which pro-
duced better performance in combination than as individual
components. Specifically, we investigated combinations of

« Developmental process governed by ‘genes’

« Developmental evaluation

« Evaluation in sequence

« Varying semantics during development (layered learning)

« Adaptive variation rates

« Availability of "stage” information to the developing

organism

In the implementation, we extended the pre-existing Tree
Adjoining Grammar Guided Genetic Programming (TAG3P)
framework to incorporate these components, resulting in De
velopmental TAG3P (DTAG3P).

DTAG3P was benchmarked on a range of problems,
and compared with conventional non-developmental systems

JJAG3P and tree-based GP), and with systems omitting some

f the proposed synergistic components.

order function theory, investigation of a wide range of mlte + EDE was more computationally efficient than its com-

natives for detailed implementation, and broader expertaie
validation of its value. However the current meta-mechanis *
lacks a crucial aspect of natural development: the abifithe
developmental process to respond to environmental infegenc
We view this as one of the most promising future researche
directions.

At a more detailed level, we plan to undertake more °®
detailed studies of parameter sensitivity, especiallyhef key
0 parameter; at the same time, we will be investigating ways
to self-adapt these parameters, to remove the tuning load.

In related studies, we are examining the role of DTAG3P
as a hyperheuristic, and its ability to learn general sohs;j .
and then adapt them to new problems. Specifically in the
area of machine learning, we are currently investigatirey th
potential for developmental evaluation and layered lewy o
generate more robust, parsimonious solutions to noisyilegr
problems.

parators, finding more accurate solutions faster.

EDE evolved greater regularity, reflecting repeated dupli-
cations of segments of the phenome, than did the other
systems.

This regularity resulted in better scalability, which was
absent unless all the above components were provided.
In EDE, parsimony in structure could be preferentially
selected without any need for an explicit parsimony
management scheme. Subjectively, EDE’s solutions were
generally elegant, simple, small in size and easily under-
standable.

The evolutionary developmental evaluation mechanism
incorporated re-use of building blocks, as confirmed by
compression measurements. Thus, it had the ability to
explore a larger and more sophisticated problem space
by building up from simpler ones.

Overall, the results validated our hypotheses about the

One interesting result of this work is the observation that o effects of combining evolution, lifelong evaluation thghout
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development, and layered learning, confirming that theltesu [18]
ing implicit generalisation pressure supported more #ined

and

scalable solutions to problems. It opens up a numbﬁr9

of new lines of research, with the potential for significant
progress in developing effective, scalable learning syste

(20]
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