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Abstract—This paper presents two methods for self-adapting
the semantic sensitivities in a recently proposed semantics-based
crossover: Semantic Similarity based Crossover (SSC) [1].The
first self-adaptation method is inspired by a self-adaptivemethod
for controlling mutation step size in Evolutionary Strategies (1/5
rule). The design of the second takes into account more of
our previous experimental observations, that SSC works well
only when a certain portion of events successfully exchange
semantically similar subtrees. These two proposed methodsare
then tested on a number of real-valued symbolic regression
problems, their performance being compared with SSC using
predetermined sensitivities and with standard crossover.The
results confirm the benefits of the second self-adaption method.

Index Terms—Genetic Programming, Semantics, Crossover,
Self-Adaptation, Symbolic Regression.

I. I NTRODUCTION

Genetic Programming (GP) is an evolutionary algorithm,
inspired by biological evolution, for finding problem solutions
in the form of computer programs [2], [3], [4]. The program
is usually presented through syntactic formalisms such as s-
expression trees [2], a linear sequence of instructions, grammar
derivation trees, or graphs [5]. The genetic operators in such
GP systems are generally designed to ensure the syntactic
closure property – i.e. to always produce syntactically valid
children from syntactically valid parent(s). GP evolutionary
search is performed on the syntactic space of programs us-
ing such purely syntactic operators, with the only semantic
guidance coming from the fitness of individuals.

Although GP has shown its effectiveness in solving diverse
problems, the limitations to (finite) behavior-based semantic
guidance, and purely syntactic genetic operators, are somewhat
alien to the perspective of programmers. In programming, the
search for appropriate computer programs is generally con-
strained not merely by syntax, but also by semantics. In normal
practice, a change to a program is only made after careful
attention to the change in semantics. To incorporate more of
this flavour into GP, a number of researchers have proposed
a variety of semantically based methods for controlling the
genetic operators [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16].
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In recent work [1], Uy et al presentedSemantic Similarity
based Crossover(SSC), which pays attention to the scale of
semantic difference between two subtrees. The results reported
in [1] show that SSC helps to improve the performance of
GP in solving a family of real-valued symbolic regression
problems. However the work in [1] has some undoubted
drawbacks:

1) The definition of semantic distance leaves its value
dependent on the number of sample points used in
approximating the semantics.

2) SSC was tested on only one family of problems with a
single domain (range of input values).

3) Most important, the performance of SSC depends
strongly on some manually tuned parameters (semantic
sensitivity). This leaves to users the problem of deter-
mining appropriate semantic sensitivities.

This paper aims to reduce the above problems; the main
contributions are:

1) Modification of the semantic distance to use the mean,
rather than the sum, of absolute distances, so removing
the dependence on the number of sample points.

2) Testing on a wider range of regression problems.
3) Proposing and testing of two self-adaptive schemas for

tuning semantic sensitivities

The remainder of the paper is organised as follows. In the
next section, we give a review of related work on semantic
based crossovers in GP and a brief review of self-adaptationin
Evolutionary Computation (EC). Section III describes SSC and
the two proposed self-adaptive mechanisms. The experimental
settings are detailed in Section IV. The results of the exper-
iments are presented and discussed in section V. Section VI
concludes the paper and highlights some potential future work.

II. RELATED WORK

This section presents the review of related work on semantic
based crossovers in GP and a brief review of self-adaptation
in Evolutionary Computation (EC)

A. Semantics in Genetic Programming

Recently, GP researchers have paid increasing attention to
the use of semantics to improve the ability of GP to solve
problems. Generally, researchers have taken this to mean
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making use of additional information to guide GP search. The
work falls into three main strands:

1) using formal methods [7], [8], [11], [12], [13]
2) using grammars [6], [9], [10]
3) using structures such as GP trees [14], [15], [16], [1]
The first approach was advocated by Johnson in a series of

papers [7], [8], [11]. In these methods, semantic information
extracted through formal methods (e.g., Abstract Interpretation
and Model Checking) is used to quantify fitness in problems
where it is difficult to measure by sample point fitness.
Katz and Peled subsequently used model checking to solve
the Mutual Exclusion problem [12], [13]. Again, individuals’
fitness is measured through model checking. These formal
methods have a strict mathematical foundation, that potentially
may aid GP. Perhaps because of high complexity, however,
these methods have seen only limited research despite the
advocacy of Johnson [17]. Their main application to date has
lain in evolving control strategies.

In the second category, Attribute Grammars are the most
popular formalism. Attributes added to a grammar can gener-
ate some useful semantic information about individuals, which
can be used to eliminate bad individuals [10], or to avoid
generating semantically invalid ones [6], [9]. However the
attributes used to represent semantics are problem dependent,
and it is not always easy to design such attributes for a new
problem.

In the last category, semantics has mainly been used to
control the GP operators. In [14], the authors investigatedthe
effect of semantic diversity on Boolean domains, checking
the semantic equivalence between offspring and parents by
transformation to a canonical form, Reduced Ordered Binary
Decision Diagrams (ROBDDs) [18]. Their information is used
to determine whether the offspring are copied to the next gen-
eration. The method improved GP performance, presumably
because it increased semantic diversity. The method has also
been applied to mutation [19] and to initialisation [20].

While, most of previous research on semantics in GP were
focused on combinatorial and boolean problems [9], [14], [15],
[12], research on real-valued domains [16], [1], [21] is much
more recent. Krawiec and Lichocki [21] based the semantics
of individuals on fitness cases, using it to guide crossover
(Approximating Geometric Crossover- AGC). AGC turned
out no better than standard crossover (SC) on real-valued
problems, and only slightly better on Boolean.

Uy et al. [16] proposed Semantics Aware Crossover (SAC),
another crossover operator promoting semantic diversity,based
on checking semantic equivalence of subtrees. It showed
limited improvement on some real-value problems; it was
subsequently extended to Semantic Similarity based Crossover
(SSC) [1], which turned out to perform better than both SC
and SAC [1]. However, the performance of SSC depended
on some predetermined parameters, the semantic sensitivities.
Our aim here is to test whether, on a broad class of problems,
self-adaptation of semantic sensitivity could be used.

B. Self-Adaptation in Evolutionary Computation

There have been a number of studies of automated control
of different aspects of evolutionary algorithms. Angeline[22]

distinguished three categories:
1) population-level– techniques that statistically analyse

the global information from the whole population and
use this information to dynamically adjust parameters.
For example, in [23], the authors recorded the statistics
of all subtrees to figure out the points that are likely
to be more advantageous for crossover. A self-adaptive
scheme that measures the ratio of successful mutations
to all mutations in [24] is also a kind ofpopulation-level
techniques.

2) individual-level– adaptive methods that alter the way
an individual itself is treated by the system. Harper
and Blair [25] used self-adaptation to choose between
crossover operators in Grammatical Evolution (GE [26])
for a particular pair of parents

3) component-level– adaptive techniques that automat-
ically adjust one or more elements of an individ-
ual. Angeline’s scheme for determining multi-point
crossovers [27] can be seen as an example.

Most early research on self-adaptation focused on control-
ling operators (crossover and mutation). More recently, self-
adaptive schemas have also been developed for other aspects.
One parameter that has been attracted much attention is the
population size [28], [29]. Silva and Dignum [30] presented
a self-adaptive method for setting the maximum length of GP
individuals.

The self-adaptive methods proposed in this paper can be
seen as population-level methods, in that they gather informa-
tion from the whole population and use this information in
the next generation. They differ from previous self-adaptive
schemas in self-adapting two new parameters, thesemantic
sensitivities, in SSC.

III. M ETHODS

This section briefly presents SSC and then details two
adaptive methods for it.

A. Semantic Similarity based Crossover

The SSC is almost identical to that of Uy et al. [1], except
for a slightly modified distance measure. We start with a
clear defintion of (sub)tree semantics. Formally, theSampling
Semantics(SS) of a (sub)tree is defined as follows:

Let F be a function expressed by a (sub)treeT on a domain
D. Let P be a sequence of points sampled from domain
D, P = (p1, p2, ..., pN ). Then, theSampling Semanticsof
T on P in domainD is the corresponding sequenceS =
(s1, s2, ..., sN ) wheresi = F (pi), i = 1, 2, ..., N .

The optimal choice ofN andP depend on the problems;
we follow the approach of [1] in setting the number of points
for evaluating the semantics equal to the number of fitness
cases (20 for single variable functions and 100 for bivariate
functions – Section IV) and in choosing the sequence of points
P uniformly randomly from the problem domain.

Based on SS, we define aSampling Semantics Distance
(SSD) between two subtrees. It differs from that in [1] in using
the mean absolute difference in SS values, rather than (as be-
fore) the sum of absolute differences. LetU = (u1, u2, ..., uN )
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and V = (v1, v2, ..., vN ) represent the SSs of two subtrees,
S1 and S2; then the SSD betweenS1 and S2 is defined in
equation 1:

SSD(S1, S2) =

∑

N

i=1
|ui − vi|

N
(1)

We follow [1] in defining a semantic relationship,Semantic
Similarity (SSi), on the basis that the exchange of subtrees
is most likely to be beneficial if they are not semantically
identical, but also not too different. Two subtrees are
semantically similar if their SSD lies within a positive
interval. The formal definition of SSi between subtreesS1

andS2 is as the following equation:

SSi(S1, S2) = if α < SSD(S1, S2) < β

then true

else false

α and β are two predefined constants, thelower and upper
bounds for semantics sensitivity. In general, the best values
for lower and upper bound semantic sensitivity(referred as
LBSS and UBSS respectively) are problem dependent. In [1],
the best settings found by manual tuning for the particular
problems wereα = 10−3 andβ = 0.4.

Algorithm 1: Semantic Similarity based Crossover

select Parent 1P1;
select Parent 2P2;
Count=0;
while Count<Max Trial do

choose a random crossover pointSubtree1 in P1;
choose a random crossover pointSubtree2 in P2;
generate a number of random points (P ) on the
problem domain;
calculate the SSD betweenSubtree1 andSubtree2
on P
if Subtree1 is similar toSubtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=Max Trail then
choose a random crossover pointSubtree1 in P1;
choose a random crossover pointSubtree2 in P2;
execute crossover;
return true;

The primary objective of SSC was to improve the locality of
crossover. Algorithm 1 (adapted from [1]) shows the detailed
operation of SSC. The value of MaxTrial was set at 12, a
value which was determined through experimental results.

B. Self-Adaptation for Semantics Sensitivity

The self-adaptive methods proposed in this subsection focus
primarily on automatically adjusting UBSS, as it is more
difficult to tune than LBSS. LBSS is then adjusted, based
deterministically on the UBSS.

Our first method is inspired by the 1/5 rule in an Evo-
lutionary Strategy (ES). The 1/5 rule was first proposed by
Rechenberg [24] for controlling mutation variance in ES. It
was inspired by a theoretical analysis for optimising ES param-
eters. It may be stated as:The optimum ratio of constructive
mutations to all mutations is 1/5. If it exceeds 1/5, increase the
variance; if less, decrease variance. A mutation is said to be
constructive if it improves the fitness of the parent. Letps

t be
the ratio of constructive mutations at generationt, andσt the
mutation variance; then the mutation variance at generation
t+ 1, σt+1, is adjusted using equation 2:

σt+1 =











cd.σ
t if pc

t<1/5;

ci.σ
t if pc

t>1/5;

σt if pc
t=1/5.

(2)

ci is a predefined increment, generally set between 0.82 and
0.85;cd is a predefined decrement, generally set to 1/cd [31].

We propose a variant for semantic sensitivity, which we call
Self-Adaptation based on Constructive Effects (SACE). UBSS
is self-adapted using equation 3:

βt+1 =











cd · β
t if pc

t< ǫ;

ci · β
t if pc

t> ǫ;

βt if pc
t= ǫ.

(3)

βt denotes the UBSS at generationt, while ps
t is the con-

structive ratio for SSC, andci, ci are as above. A crossover
is considered to be constructive if it produces two children
that are fitter than their parents. The LBSS is adapted by the
simple equation:αt+1=10−3*βt+1. In this paper, we tested
several values ofcd, ci, andǫ.

It might seem that we have gained little, replacing two
parameters (α and β) by three; however if the algorithm is
much less sensitive to the new values than the old, then there
has been an important gain.

If UBSS is too small, SSC may mostly fail, it being very
difficult to select subtree pairs satisfying the SSC condition.
Conversely, if UBSS is too large, SSC will generally succeed,
behaving the same as SC. Instead of controlling the construc-
tive rate, we might instead aim to ensure that a certain por-
tion of crossovers successfully exchange semantically similar
subtrees (whatever the final effect on fitness). Self-Adaptation
based on Successful Execution (SASE) aims to ensure that an
intermediate proportion of SSC events successfully exchange
similar subtrees. It is controlled using equation 4:

βt+1 =











cd · β
t if ps

t<ǫ;

ci · β
t if ps

t> ǫ;

βt if ps
t= ǫ.

(4)
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TABLE I
SYMBOLIC REGRESSIONFUNCTIONS.

Groups Functions Fitness Cases

F1 = x3 + x2 + x 20 points⊆ [-1,1]
Group

1
F2 = x4 + x3 + x2 + x 20 points⊆ [-1,1]
F3 = x5 + x4 + x3 + x2 + x 20 points⊆ [-1,1]
F4 = x6 + x5 + x4 + x3 + x2 + x 20 points⊆ [-1,1]

F5 = sin(x2)cos(x)− 1 20 points⊆ [0,1]
Group

2
F6 = sin(x) + sin(x+ x2) 20 points⊆ [0,π/2]
F7 = log(x+ 1) + log(x2 + 1) 20 points⊆ [1,3]
F8 =

√
x 20 points⊆ [0,4]

F9 = sin(x) + sin(y2) 100 points⊆ [0,1]x[0,1]
Group

3
F10 = 2sin(x)cos(y) 100 points⊆ [0,1]x[0,1]
F11 = xy 100 points⊆ [0,1]x[0,1]
F12 = x4 − x3 + y2/2 − y 100 points⊆ [0,1]x[0,1]

as beforeβt is the UBSS at generationt, and ps
t is the

proportion of SSC that succeed. As before, the LBSS is set to
αt+1=10−3*βt+1. Several values ofǫ will be investigated in
the following sections.

IV. EXPERIMENTAL SETTINGS

We investigated the effects of SACE and SASE, compar-
ing them with both SSC (i.e. with predetermined semantic
sensitivities) and SC. We tested these four operator schemas
on twelve real-valued symbolic regression problems, classified
into three groups. Group1 includes four single variable func-
tions in the form of binomial expressions. Group2 includes
four single-variable functions using trigonometric, log and
square functions. Most are taken from [32] and [33]. The
domains of these functions differ from those inGroup1.
Group3 contain four bivariate trigonometric, exponential, and
binomial functions, again from [32]. All are presented in
table I.

The experimental parameter settings are listed in Table II,
and follow those of [1]. Our aim is to study the behaviour
of crossover in the context of a normal GP run, so we have
retained a low rate of mutation. Note that the raw fitness
function is the sum of absolute error over all fitness cases, and
a run is considered successful when some individual scores
hits on all fitness cases (i.e. absolute error<0.01) . The LBSS
for SSC is set at10−3, while UBSS is tested at good values
from [1], namely 0.4, 0.5 and 0.6, giving SSCX with X being
04, 05 or 06.

For SACE, five configurations were tested. In the first three
configurations, we set the rate of constructive crossover at5%
(this value being calibrated from experiments as one of the
best for SACE), usingci as 0.85, 0.9, 0.95 (called SACEX,
where X is 85, 90, or 95). For the last two configurations, we
fixed ci at 0.9 and tested different values of the constructive
rate – 0.45 and 0.55 (called SACEX where X is 45 arond 55).
For all configurations, the value ofcd was set to1/ci.

For SASE, four configurations were used. As for SACE,ci
was fixed at0.9, andcd to 1/ci (again, chosen by experimental
testing). In the first three configurations of SASE,pt

s
is set to

65%, 75% or 85% (known as SASEX with X being 65, 75, or
85. In the final configuration of SASE, the rate of successful
SSC is itself adapted. The rationale is that early in search,

TABLE II
RUN AND EVOLUTIONARY PARAMETER VALUES.

Parameter Value

Generations 50
Population size 500
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, /, sin, cos, exp,

log (protected versions)
Terminals X, 1 for single variable problems,

and X,Y for bivariable problems
Raw fitness sum of absolute error on all fitness cases
Hit when an individual has an

absolute error< 0.01 on a fitness case
Successful run when an individual scores hits

on all fitness cases
Termination max generations exceeded
Trials per treatment 100 independent runs for each value

more global search is needed, so that the rate of successful
SSC should be lower. In later generations, SSC should be
encouraged to focus more on exploiting good solutions, so the
rate of successful SSC should increase. To implement this, we
used the schedule shown in equation 5 to control the rate of
successful SSC:

pts = α+ (β − α) ·
t

tmax

(5)

where t is the current generation andtmax is the maximum
evolution time. In these experiments,α was set to 65% andβ
to 85%. This setting of SASE is referred as SASES . The initial
value of UBSS was set at 0.4 for all self-adaptive schemas.

V. RESULTS AND DISCUSSION

We recorded the performance of all crossover operators
using two classic performance metrics, mean best fitness and
the proportion of successful runs.

The results for 100 runs of Group1 functions are presented
in Table III. It is clear from the success rates that SSC
generally out-performs SC (consistent with [1]). SACE, if
anything, slightly lowers the performance of SSC, while SASE
marginally improves it, consistently so in the case of SASE75
and SASES. Thus at least for these problems, SACE brings lit-
tle benefit, while SASE out-performs SSC. Equally important,
SASES is consistently better than SSC, while reducing the
parameter tuning requirement. The best fitness table confirms
these conclusions: SACE generally performed worse than
SSC, while SASE performed as well, and often better. While
SASEX with X=0.75 often gave the best performance, SASES
gave comparable performance with a reduced parameter tuning
requirement.

Table IV presents the results for Group2 functions
strengthen the previous results. SSC always out-performs SC
by quite large margins. The comparison of SACE and SSC is
mixed, but it is clear that SACE only performs better than SSC
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TABLE III
PERFORMANCEMETRICS FORGROUP1 FUNCTIONS

Crossovers F1 F2 F3 F4

Percentage of Successful Runs

SC 43 10 3 2

SSC04 66 34 16 8
SSC05 60 31 17 10
SSC06 62 25 12 4

SACE85 51 16 9 7
SACE90 55 21 5 3
SACE95 63 21 13 6
SACE45 56 26 6 11
SACE55 61 26 6 3

SASE65 61 45 17 11
SASE75 69 41 20 11
SASE85 59 38 17 9
SASES 67 37 20 17

Mean± Standard Deviation of Best Fitness

SC 0.18±0.24 0.30±0.23 0.40±0.37 0.49±0.27

SSC04 0.08±0.13 0.16±0.16 0.20±0.19 0.25±0.29
SSC05 0.09±0.16 0.15±0.15 0.21±0.20 0.28±0.31
SSC06 0.08±0.12 0.20±0.24 0.21±0.19 0.27±0.20

SACE85 0.12±0.19 0.21±0.18 0.29±0.24 0.38±0.32
SACE90 0.09±0.13 0.21±0.18 0.29±0.23 0.30±0.23
SACE95 0.10±0.15 0.18±0.17 0.23±0.19 0.31±0.30
SACE45 0.09±0.15 0.21±0.20 0.28±0.23 0.33±0.33
SACE55 0.10±0.16 0.22±0.20 0.27±0.22 0.33±0.21

SASE65 0.08±0.16 0.13±0.16 0.19±0.19 0.25±0.24
SASE75 0.07±0.13 0.13±0.16 0.19±0.18 0.26±0.24
SASE85 0.07±0.13 0.13±0.15 0.21±0.18 0.26±0.22
SASES 0.08±0.14 0.13±0.15 0.20±0.18 0.24±0.23

TABLE IV
PERFORMANCEMETRICS FORGROUP2 FUNCTIONS

Crossovers F5 F6 F7 F8

Percentage of Successful Runs

SC 42 4 20 14

SSC04 71 24 49 38
SSC05 70 19 48 35
SSC06 72 21 53 34

SACE85 72 13 49 22
SACE90 74 17 48 32
SACE95 79 20 53 34
SACE45 76 15 48 30
SACE55 68 14 52 32

SASE65 87 29 57 43
SASE75 83 28 63 39
SASE85 84 34 63 42
SASES 84 35 57 50

Mean± Standard Deviation of Best Fitness

SC 0.11±0.12 0.27±0.14 0.15±0.09 0.25±0.20

SSC04 0.06±0.09 0.16±0.13 0.08±0.05 0.13±0.12
SSC05 0.06±0.08 0.17±0.15 0.10±0.07 0.12±0.11
SSC06 0.06±0.09 0.18±0.14 0.08±0.06 0.12±0.10

SACE85 0.07±0.09 0.22±0.16 0.10±0.08 0.17±0.15
SACE90 0.07±0.12 0.21±0.19 0.09±0.07 0.14±0.15
SACE95 0.05±0.08 0.17±0.12 0.08±0.05 0.13±0.11
SACE45 0.05±0.07 0.20±0.13 0.10±0.07 0.17±0.15
SACE55 0.07±0.12 0.21±0.15 0.08±0.06 0.15±0.15

SASE65 0.03±0.03 0.14±0.11 0.07±0.05 0.09±0.08
SASE75 0.04±0.07 0.16±0.12 0.07±0.04 0.11±0.10
SASE85 0.05±0.10 0.15±0.14 0.07±0.06 0.10±0.10
SASES 0.03±0.06 0.14±0.12 0.07±0.04 0.09±0.08

TABLE V
PERFORMANCEMETRICS FORGROUP3 FUNCTIONS

Crossovers F9 F10 F11 F12

Percentage of Successful Runs

SC 35 14 0 0

SSC04 42 36 0 0
SSC05 48 25 0 0
SSC06 48 26 0 0

SACE85 79 52 0 0
SACE90 82 47 1 0
SACE95 71 60 1 0
SACE45 81 49 1 0
SACE55 80 47 1 0

SASE65 70 56 0 0
SASE75 68 49 1 0
SASE85 65 44 0 0
SASES 75 58 1 0

Mean± Standard Deviation of Best Fitness

SC 1.67±1.72 1.19±1.63 3.93±1.55 2.04±.053

SSC04 1.06±1.47 0.62±1.07 3.16±1.10 1.69±0.52
SSC05 1.13±1.58 0.71±0.59 3.27±1.25 1.74±0.53
SSC06 0.97±1.40 0.61±0.51 3.01±1.41 1.72±0.49

SACE85 0.42±1.09 0.68±1.27 3.46±1.56 1.72±0.57
SACE90 0.37±0.99 0.57±0.76 3.04±1.28 1.72±0.52
SACE95 0.55±1.18 0.39±0.60 2.98±1.16 1.62±0.55
SACE45 0.47±1.14 0.55±0.74 3.14±1.27 1.69±0.53
SACE55 0.44±1.10 0.52±0.67 3.13±1.23 1.67±0.50

SASE65 0.58±1.25 0.36±0.55 2.65±1.31 1.61±0.55
SASE75 0.62±1.18 0.47±0.62 2.53±1.15 1.57±0.52
SASE85 0.71±1.29 0.43±0.50 2.73±1.21 1.53±0.57
SASES 0.55±1.25 0.37±0.59 2.49±1.19 1.54±0.51

if the parameters are carefully chosen (and not always even
then). On the other hand, SASE performs substantially better
than SSC, with the margins being greater than for Group

1

functions. If X is carefully chosen for the particular problem,
SASEX can give the best performance for some functions,
but SASES gives clearly the best all-round performance while
reducing the requirement for setting parameters.

The results for Group3 functions in Table V are interesting
in a number of respects. First, they demonstrate very substan-
tial improvements in performance, both of SSC over SC, and
of self adaptation in SSC, whether measured by the success
rate or the mean best fitness achieved. Again, the best overall
performance comes from SASE, and particularly from SASES.
However the results differ from the previous in that SACEX
performed substantially better than SSC onF9 andF10, some
settings of X forF9 giving the overall best performance.

We tested the statistical significance of all differences from
SC of mean best fitness in the results in Table III, Table IV, and
Table V using the Wilcoxon signed-rank test with a confidence
level of 99%. The results were that all methods (SSC with
predetermined sensitivities, SACE, and SASE) are significant
better than SC in terms of mean best fitness.

VI. CONCLUSION

In this paper, we proposed two simple self-adaptive methods
for dynamically adjusting semantic sensitivities in semantic
similarity based crossover (SSC). The first method, SACE, was
inspired by a similar self-adaptive mechanism for mutation
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variance in Evolutionary Strategies (ES). The second method,
SASE, aims to ensure that a certain proportion of SSC can
successfully exchange semantically similar subtrees. Thetwo
methods were tested on twelve problems with a range of
domains and forms of target functions. The results were
compared with SSC with predetermined sensitivities, and with
standard crossover (SC).

The results yield two important conclusions. First, they ex-
tend the results of [1] to a wider range of functions, confirming
the significant and substantial performance improvement of
SSC over SC, independent of problem domain or form of
target function. SSC is definitely worth the effort. Second,they
show a particular form of self-adaption (SASE, particularly
SASES), can yield further performance gains, while (again,
especially in the case of SASES) reducing the number of
tuning parameters. The performance gains are particularly
marked for more difficult functions.

Overall, this further confirms the importance of semantic
locality1 in genetic operators in GP, as this is the main effect
of SASE.

In the near future, we aim to further characterise the effects
of the parameters introduced in SACE and SASE. Having
now confirmed the importance of self-adaptation of semantic
sensitivity, we also plan to investigate more sophisticated self-
adaptation techniques from the literature in further work.
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