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Abstract— Standard tree-based genetic programming suffers would not need to be concerned about structural difficulty fo

from a structural difficulty problem, in that it is unable to s earch problems whose solutions have intermediate levels of déstn
effectively for solutions requiring very full or very narro w trees. since they are not sparse).

This deficiency has been variously explained as a consequenaf In thi K ¢ based tati
restrictions imposed by the tree structure, or as a result ofthe n this work, we propose a new tree-based representation

numerical distribution of tree shapes. We show, that by usigp and simple local operators for GP. Using these operators and
a different tree-based representation and local (insertio and a very simple search strategy (stochastic hill-climbing
deletion) structural modification operators, that this problem can  show that the structural difficulty problem is very largely
be almost eliminated even with trivial (stochastic hill-cimbing) ameliorated, thus disposing of the two previous explanatio

search methods, thus eliminating the above explanations. &V e .
argue instead, that structural difficulty is a consequence bthe of the structural difficulty problem. Namely, that this ptein

large step size of the operators in standard genetic programing, IS not due simply to the tree representation, since the new
which is itself a consequence of the fixed-arity property emtdied representation is also tree-based. It is also not a simple

in its representation. consequence of the sparseness of particular tree stracture
Index Terms— Genetic Programming, Structural Difficulty, —Since these are equally sparse under the new representation
representation, operator, insertion, deletion. We propose a new hypothesis, based on the connectivity of
neighbourhood topologies, to explain the structural diffic
|. INTRODUCTION problem.

. _— . In Section II, we re-visit the structural difficulty problem
INCE its very beginnings in the late 1980s [4], [ZO]Wg propose a hypothesis for the cause of structural difficult

Genetic Programming (GP) has relied on tree represe . S
tation as a key element. However recent work by Daida a trge-bashgthP. Wg thtin |Etro_dufce Tree ,IA{djomtl_ng Grammars
his colleagues [10], has cast doubt on our understanding. S), W Ich provide thé basis tor our afternalive represe
ion. Section IIl details the representation and inteduthe

of tree representation for GP, by showing that the standat L ; ) .
oint insertion and deletion operators which are the key to

representation and operators generate important anamalfs h. di ing their relationshio with the dista
They demonstrated that evolutionary search on this repPeLlr approach, discussing their retationship wi € .
sentation is unable to effectively search all tree shaped, etric on bqth gen(_)typ_e and phenotype space. I.t also details
in particular, that very full or very narrow tree solution the S_tOChaSt'C h|II-cI|mb|ng searc_h aIgonthr_n use_d N th;_aqar.
may be extraordinarily difficult to find, even when the fithes eFaHs of .the experimental regime are given in Sectmn v,
function provides good guidance to the optimum squtioH‘.’_h'le Section V presents the results of the experiments and

These results have important ramifications for tree-based %SC.USS?S thelr meaning. Fmally, in Section VI, we examine
They suggest that GP will perform poorly on problems wherg® implications of the experiments.
solutions require full or narrow trees (which we may not
even know in advance). Even more worrying, they raise the Il. BACKGROUND AND PREVIOUS WORK
possibility (since the difficulties arise at both ends ofsthi
‘fullness’ spectrum) that this problem may arise just from In this section, we review the structural difficulty problém
the requirement for a particular tree structure, and henag nGP and propose a new hypothesis on that problem. The section
apply to any problem whose solutions are restricted to esds with some basic concepts of tree adjoining grammars.
particular shape, of whatever degree of fullness.

Daida and his colleagues blame this difficulty on the iny  siryctural Difficulty in Genetic Programming
flexibility of the tree representation, while other explaoas
have been discussed in the GP community based on

relative sparseness of full and narrow trees (in which case at structure alone can pose great difficulty for standard

enetic Programming (GP) search (using an expression tree
This is a self-archived copy of the accepted paper, selfieed un- representation and sub-tree swapping crossover). lrcpbatj

der IEEE policy. The authoritative, published version cam found at they delineated 4 regions of the search space of tree stesgtu
http://ieeexplore.ieee.org/xpls/aldl.jsp?arnumber=1613934&tag=1 . .

Manuscript submitted November 30, 2004. as shown in Figure 1

Revised version submitted August 31, 2005. Most solutions found by standard GP search lie in region I.

This work was undertaken while all authors were with the Ersity of Tq put it another way, it is easy for GP to find solutions to
New South Wales at the Australian Defence Force Academy. ’

Nguyen, Xuan Hoai is now at the Army Technical Academy of N, prOblemS which lie in region I-_ GP has greater diﬁiC_UIty in
and Bob McKay is now at Seoul National University, Korea searching the next region, region W[, I1,). By the time

gén a series of papers [3], [5]-[10], Daida et. al. showed
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Depth of the target solution, and, ;v.; andt,.;..; are the depth and

number of leaves of the individual (tree). In [10], Weptn
Fig. 1. Four regions in the space of tree structures. Regarinith permission and Wi.,.,, are two weighted numbers satisfyingaep:n +
from [10] Wierm = 100. We note that the size of a tree in the LID
problem is related to it$:,,4e: Dy the equations = 2 x

we come to region Il {I1,, I11,, respectively very wide barges — 1.

. . .In [10], two families of LID problem instances were used
and very narrow trees), GP is effectively unable to search jn". !
: ’ . . . to investigate the search space of tree structures, namely
this region, and will not find solutions there. Of course oncg . Y . ., . .
orizontal cut” and "vertical cut”. In the first family, the

the ratio of depth to number of nodes becomes too large or : .
Lo ] Lrarger Was fixed at 256 and thé,,q.: was varied from 8
too small, it is impossible to construct trees. There are ng": " )

. . . . t0 255. In the secondii,rg.: Was fixed at 15 whil€fierget
feasible tree structures in region IM1(,, IV;). Daida and : - arger
. . . was varied from 16 to 32768. For a GP system using either

his colleagues noted that the boundaries of regions Il an ;
sie or depth as the chromosome complexity measure, these

'n'q'a"?‘::'i talg:firsé;'gfrir(’:urﬂ:ng%:]hv?lthg:]eyasa?g%ir&taﬁ; thgb\{?ﬁounds on size and depth (256 and 15) are quite typical. &igur
jorty ' ' e 2 is a simplified version of Figure 1 with the positions of the

applications of GP, a relatively small search space bound’is . ; .
used problem instances superimposed on it.

To further validate this analysis, in recent work [10], Daid Fi 3 and 4 sh h its. based 90000 ¢
et al. specified a test problem known as LID. In the LIDGP'gureZ dan N OWF € r(?sr,]u tsi) ased on rulns, °
problem for GP, there is only one arity 2 function, nand, (standard representation with subtree crossover) €

and one terminal namddaf. The raw fitness of an individual families of problem instances. We note that in Figure 4, the x

tr depends purely on its structural difference from the targg)t(_iS is the number of target node),(which is app_roximately
solution. It is defined as follows: twice the value ot;,,4.:. The upper parts of the figures show

the proportion of successful runs, while the lower show the
Fitness,qw(tr) = Metricaepsn + Metricier, (1) region to which each problem instance belongs (the cross sig
means region |, while the vertical line means regions Il and

).

Where Metricgeper, and Metricier, are defined as follows:

dare_dacual
(1 - Wrarget ~ doctuatly )

Metricaeptn = Waeptn drarget The results in the two figures, surprisingly, show that
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g 100 — B. Tree Adjoining Grammars
% 28 B Tree adjoining grammars (TAGSs) are tree-generating and
x i analysis systems, first proposed by Joshi et al in [14]. Tree
ﬁ 40 Adjoining Grammars (TAGs) have become increasingly im-
o 20— portant in Natural Language Processing (NLP) since their
A 0 introduction.
— The aim of TAGs is to more directly represent the structure
i of natural languages than is possible in Chomsky languages,

] and in particular, to represent the process by which natural
language sentences can be built up from a relatively small
set of basic linguistic units by the inclusion of insertable
sub-structures. Thus ‘The cat sat on the mat’ becomes ‘The
big black cat sat lazily on the comfortable mat which it
had commandeered’ by the subsequent insertion of the ele-
ments ‘big’, ‘black’, ‘lazily’, ‘comfortable’, and ‘whichit had
commandeered’. In context-free grammars (CFG)(Chomsky'’s
formalisms of type 2), the relationship between these two
sentences can only be discerned by detailed analysis af thei
derivation trees; in a TAG representation, the derivatiae t
of the latter simply extends the frontier of the former. Td pu
7?2 ol 13 it another way, the edit distance between the derivatiosstre
Target Nodes of these closely related sentences, is much smaller in a TAG
_ _ L ’ ~ representation than in a CFG representation.
gghlilésioir?r%onrqn?foff Success for GP on the Vertical cut'pReted with At it the only tree rewriting operation in TAGS was
adjunction (described below) and the formalisms were dalle
tree adjunct grammars. After a sequence of developments
standard GP, using expression tree representation and d0g15]-{18], a new operation, called substitution (desed
tree-swapping crossover, performed extremely poorly @n tR€low), was added and the formalisms have subsequently
two families of problem instances, especially for vertiaati P€€n known as tree adjoining grammars. Another operation,
horizontal cut problems lying in regions Il and Ill. ThisSubstitution, does not change the family of languages that
provides strong evidence that standard GP has considerdi8 be represented by TAG grammars, and in that sense is
difficulty in finding specific structures. Daida et al. [10] mte @ rédundant element. However, substitution often dramiftic
further, in showing that these results cannot be fully exgia "€duces the grammar complexity required to representaypic
by the sparsity of tree structures in regions Il and IIl (frey (natural and computer) languages, and hence is important fo
are not an equilibrium problem). Their explanation conjeeti Practical application.
that the expression tree representation was itself the mairffom their early days, TAGs (tree adjunct grammars and
cause of the structural difficulty. tree adjoining grammars) were shown to possess a number
1) Structural Difficulty and Operator Step SizElaborating of invaluable propgrties for handling various issues iruredt
on Daida’s explanation, we conjecture that in standard dpnguage processing [16], [21], [22]. Some of these have
the problem lies in the structural step size of the structuf@iural analogues in GP. A comprehensive overview of TAGs
editing operators. In other words, sub-tree crossover abd s€an be found in [19].
tree mutation, the two main operators in GP, are highly Definition 2.1 (Tree Adjoining Grammars) o
structurally discontinuous. Hence, despite the preserfce Abtree adjoining grammar is a tree-rewriting system coirgist
selection pressure, the probability of exploring regiorengl  ©f & quintuple -, N, I, A, 5), where:
3 in the space of tree structures is low. We further argue that
this discontinuity is a consequence of the fixed-arity progpe 1) > is a finite set of terminal symbols.
of standard GP representation (that is, each node in the tree
has a fixed number of children, determined by its content), in2) N is a finite set of non-terminal symbol8/ N " = 0.
that fixed arity makes it difficult to design operators with a
controllable step size. 3) S is a distinguished non-terminal symbdl:c V.
There are at least two ways to validate this hypothesis. One
is to analytically analyze the probability of reaching mtg 2 4) I is a finite set of finite trees, called initial trees (or
and 3 using the particular operator set; the other is to desig a-trees).
structure editing operators and show that they can help GP to In an initial tree, all interior nodes are labeled by
solve the problem of structural difficulty. We adopt the s&to non-terminal symbols, while the nodes on the frontier
course in this paper, making use of a formalism derived from  are labeled either by terminal or non-terminal symbols.
natural language processing, Tree Adjoining Grammars. Non-terminal symbols on the frontier of an initial tree

Nodes
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5) A is a finite set of finite trees, called auxiliary trees (O'I;ig 6. Adjunction Operation

[B-trees).

In an auxiliary tree, all internal nodes are labeled by X

non-terminal symbols, and a node on the frontier is i i i i - .
labeled either by a terminal or non-terminal symbol.

The frontier must contain a unique, distinguished node, Xy x

the foot node, labeled by the same non-terminal symbol
as the tree’s root node, and marked with an asterisk
(*); other nodes on the frontier labeled by non-terminal

symbols are marked witly (for substitution). 2 as s s
The trees ink = TUA are called elementary trees. Initial trees | Ne e N
o Ny y ) . Hoal v mW | /%W
and auxiliary trees are denoted @sand 5 trees respectively. | Hoai
loved loved

A tree with its root labeled by a non-terminal symbol X is

called an X-type elementary tree. Fig. 7. Substitution
In essence, am-tree which has terminal symbols on its

frontier, is just like a minimal complete sentence, whilg-a ) )

tree is a minimal recursive structure which may be used &€mentary trees contains a terminal node. _

modify complete sentences (by using adjunction as destribe Although there are more gonstramts on LTAGS, it has been

below). shown Fhat LTAGs are equivalent to TAGs .(|.e. caqule of
TAG Example. G1={3", N, I, A, S}, whereY" is a set of generating the same languages). In the remainder of therpap

English words N = {S,VP,NP,V} andE = INnAis given W€ will deal only with LTAGs, and use the terminology, tree
in Figure 5. adjoining grammar, interchangeably to also refer to LTAGs,

denoting an LTAG with the notatioty..,..

The key operations used with tree-adjoining grammars are
the adjunction and substitution of trees. Adjunction beil C- Derivation Trees in Tree Adjoining Grammars
new (derived) treey from an auxiliary trees and another tree  In TAGs, there is a distinction between derivation and
a. If « has an interior node labeled, and 5 is an A-type derived trees, where the former encodes the sequence of
tree, the adjunction of into « producesy as follows: Firstly, adjunctions and substitutions used to generate the latiere
the sub-treex; rooted at A is temporarily disconnected fromare a number of definitions of TAG derivation trees in the
«. Next, 8 is attached to replace the sub-tree. Finally,is literature [19], [37], [42], [47]; the variant we use is dabed
attached back to the foot node 6f ~y is the final derived tree below.
achieved from this process. Adjunction is illustrated igu¥e A TAG derivation tree is a labeled object tree satisfying
6. Finally, for reference, a node labelelin an elementary the following requirements. The root node is labeled with th
tree is called an adjoining address, if there is an A-thglee  name of an S-type initial{pha) tree; the nodes other than the
tree (i.e if there is @cta tree that can adjoin to that address).oot are labeled with hames of auxiliarg)(trees. Each link
between a parent and a child node is labeled with an index,
In substitution, a non-terminal node on the frontier of amdicating the location in the elementary tree of the parent
elementary tree is substituted by an initial tree whose i®otnode to which the auxiliary tree in the child node is to be
labeled with the same non-terminal. Substitution is iHattd adjoined. At most one adjunction is permitted at each locati
in Figure 7. Each node also has attached a list of initial trees (lexetoes)
The addition of substitution does not change the class loé substituted into open (i.e. unadjoined) locations ¢lexs).
languages defined by TAG, but it helps to make the formalisithe corresponding tree generated by performing the spécifie
more compact by reducing the size of the elementary tree gabcess of adjunction and substitution is known as the ddriv
A special class of TAGs known as lexicalised TAGs (LTtree. Figure 8 shows the structure of this formulation of TAG
AGS) can be defined as follows [19] derivation and derived trees. Note that the derivationstiefe
Definition 2.4 (Lexicalised TAGS) a CFG correspond to the derived trees of a TAG.
A lexicalised tree adjoining grammar (LTAG) is a tree adjoin The set of derived trees which may be generated by a TAG
ing grammar (TAG) satisfying the requirement that eachof its known as its tree language, while the set of strings which
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TABLE |
PSEUDOCODE FORNITIALISATION PROCEDURE

1) FOR i =1 TO POPSI ZE DO

2) Choose a a random si ze [ between
M NSI ZE and MAXSI ZE.
3) Pick an a-tree «; at random
and set tree T = aj.
4) FOR j=1 TO l-1 DO
5) Set V={ node n in T such that n
has at |east one unused
adj oi ni ng address}
6) Pick a node nin V in a
uni formy random manner.
@ Has V NP 7) Random y pick a NULL adj oi ni ng
| address a in elenentary tree n.

|
loved woman 8) Anong all B-trees in the

auxiliary trees of Gies
that can adjoin to a,
choose a tree ¢t
9) Adjoin t to a in T and update T.

may be generated from these derived trees is known as i)  ENDFOR ,
11) Set individual «-th as T

string language. 12) ENDFOR
In this form of derivation tree, substitution is left to last

(i.e. all adjunctions are carried out before any substihs).
To simplify the figures in the rest of this paper, substitntioiand some context-sensitive languages), the TAG-based rep
will be omitted from the figures, as it is unimportant for th@esentation can be applied to any problems whose deseriptio
grammars used. languages are context-free, as well as to some contexitisens
1) Some Properties of TAGSTAG derivation trees, as problems.
described above, have an important property. It is pos$tble \hile the search space for a TAG-based representation is a
remove any sub-tree, and the resultant tree is still a piyfecset of TAG derivation trees, fitness evaluation is carrietoou
valid TAG derivation tree, and its derived tree is still @he derived trees decoded from them. Thus the TAG-based rep-
completed tree. In other words, unlike GP structure trees @sentation provides a natural genotype-phenotype mgppin
CFG derivation trees, the arity (number of children) of eagR which genotypes are TAG derivation trees, and phenotypes
node in a TAG derivation tree is not fixed. This property igre their corresponding derived trees. A TAG-based grammar
crucial to what follows in this paper. Apart from this nonguided genetic programming (called TAG3P) using sub-tree
fixed-arity property, TAGs have a number of other importamytation and crossover was described in detail in [26]. Fer t
properties: present purposes, we require only the initialisation pdoce.
» The TAG string languages strictly include CFG languages 2) Initialisation Procedure:We define here the algorithm
and are strictly included in indexed languages. for creating an initial random population of individuakg...
» The set of CFG derivation tree sets is strictly included iderivation trees). It is an iteration of the process for gatieg
the TAG tree languages. an individual (., derivation tree) at random. The process
« For every context-free gramma@t, there is an algorithmic starts with choosing a random size in a predefined range of
derivation of an LTAG G;., whose tree language isinteger numbers. Then, it proceeds by first randomly picking
the set of G derivation treesG., is said to strongly an a-tree from the initial tree set iit7;.,, to make an initial
lexicalise G. Informally, context-free grammars may beG,., derivation tree. This derivation tree is subsequently
algorithmically converted to TAGs [19], [34]-[36], [38]. adjoined with 3-trees drawn at random from the auxiliary
Thus, the TAG representation is sufficiently powerful toeov tree set inG., using adjunction at random places. This
the range of search spaces used in grammar guided genefizcess finishes when the randomly chosen size is reached.
programming (GGGP) [48], and hence also standard GP. The initialization procedure for TAG3P is given in table |

Fig. 8. TAG derivation tree and corresponding derived tree

I1l. M ETHODOLOGY where MINSIZE and MAXSIZE are adjustable parameters
rﬁor designating the range of individual sizes. For this &lthm
{R be useful, we need a guarantee that the process always stop
Wﬁh the desired result. However, it may not be obvious that
this process will finish and give a population of valig.,.
) derivation trees. We present a proof that this is the case.
A. Representation and Operators Theorem 1:Assuming that everg-tree and every-tree in

1) TAG Representation for Genetic Programmings a Gi., can be adjoined by at least oftetree, the initialisation
problem representation, we used the LTAG derivation trepsocedure above always finishes and gives the desiredgesult
defined in the previous section. Thus, the domain of th&roof: The only steps in the algorithm which could fail are
problem may be delineated by an LTAG gramn@@y,,.. Since steps 5 to 8 (step 3 succeeds because the definition of TAG
LTAGs can generate the tree set of context-free languagesguires the set af-trees inG., to be non-empty, while the

In this section, we introduce the TAG representatio
operators and search algorithm we used to investigate
problem of structural difficulty.
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other steps are simply housekeeping). the tree edit distance between two labeled trees is defined as
In step 5, ifj =1, thenV={ay} (since by hypothesisy; the length of the shortest sequence of editing operatioais th
has an open adjoining address). Otherwise, the last-addedransforms one tree to the other. The editing operations are
tree inT must be inV (again by hypothesis). In either casedeleting a node, inserting a node, or changing the label of a
V' is non-empty, so that steps 6 and 7 will also succeed; stepde. Each basic operation has the same cost, assigned as 1
8 then succeeds on the basis of the previous conclusions. unit. With the editing distance used as the tree metric, the
The setV is at most linear in the size of the tree, andnapping between TAG-derivation trees and derived trees is
the selection process is repeated times, so that the time Lipschitzian [33], so that the mapping has the locality @ty
complexity for randomly creating an individual froré7(...) is
quadratic in its size: Theorem 2:For every TAGG,..., suppose thaf is the map
Corollary of proof: The time complexity for initialising an used to decodes,., derivation trees into the corresponding
individual is O(1?), wherel is the size of the individual. derived trees. Then there is a fixed constaht> 0 such that,
Therefore, the time complexity of the initialising proceeu for all pairs of G;., derivation trees, v,
is M x12, where M is the population size.
3) TAG Operators: The non-fixed-arity property permits d(f(w), f(v)) < M x d(u,v) ()
the definition of a wide range of operators. It is straightfard
to define analogues of the wide range of sub-tree crossowvdrere f(u) and f(v) are the two derived trees corresponding
and mutation operators used in standard tree-based GP [26]. andv respectively, and is the tree edit distance.
Equally important, it is simple to define more biologicallyProof: Let M be the maximal number of nodes in any of the
motivated operators such as translocation and replicgith elementary tree& of Giex. If the tree edit distance between
In the current context, we argue that the cause of GRisandv is k, then there aré operations involving the addition
structural difficulty problem is the highly discontinuouatare and/or deletion of nodes required to transfarro v (and vice
of the two main operators, sub-tree crossover and mutafmn.versa). Each node in (or v) is labeled by an elementary tree
investigate this, we make use of TAG's flexibility to intramy ¢ € F, andt contains at mosf/ nodes. Moreover, since an
point insertion and deletion operators, which by their locadjunction between two elementary trees does not change the
nature permit more fine-grained search of the structureespameaning or the number of nodes, it follows that the number of
than is possible with the standard GP operators. node differences (using node addition, deletion, or relgg
« Point Insertion between f(u) and f(v), is at mostM x k. Thus the tree
If the size of the considered individual is less thaediting distance betweefi(u) and f(v) is less than or equal
MAXSIZE, insertion randomly selects a node on th& M x d(u,v).
frontier of the derivation tree, and adjoins a néairee 5) TAG Representation for the LID Probleraida’s LID
to it problem was described in Section Il. Here, we describe
« Point Deletion the specific implementation used to encode it into a TAG
If the size of the individual is greater than 1, deletiomepresentation. The context-free grammar is as follows:
selects a3-tree on the frontier of the derivation tree, and? = {N = {S},T = {join,leaf}, P,{S}} where the rule
deletes it. set P is defined as:
4) Properties of the TAG Genotype-Phenotype Mappihg: S — SjoinS
is clear that point insertion and deletion are local opesito S — leaf
the genotype (derivation tree) space - using edit distanc a The corresponding LTAG (using Joshi’s algorithm - [19])
metric [25], [28], the distance between parent and childhig.o iS Gie. = {V = {S},T = {join,leaf}, I, A) wherel U A
However TAG representation relies on a genotype to pherig-shown in Figure 9.
type mapping. We would like to know that point insertion and
deletion act as local operators in the phenotype space. ThidVith this grammar, the mapping from the derived tree to
requires us to demonstrate that the mapping satisfies Palm#re corresponding GP tree representation (i.e. the phpepty
[29] locality property, namely that small changes in gepety is also Lipschitzian: the derived tree has a skeleton of non-
result in small changes in phenotype. After “redundancy][3 terminals S, to each of which is attached exactly one terimina
[41], [43], [44], the “locality property” is possibly the nsd (either join or leaf). If each terminal is moved upwards
studied aspect of genotype-phenotype mapping in the fieldtof replace its corresponding non-terminal S, we obtain the
evolutionary algorithms (EAs). A large number of EA workstandard GP structure tree. Thus, the edit distance between
have shown the importance, across many contexts, of e derived trees is exactly twice the distance between the
locality property for mappings from genotype to phenotypeorresponding GP structure trees. Since the composition of
spaces. [11]-[13], [24], [30]-[32], [40], [46]. In this pap two Lipschitzian mappings is also Lipschitzian, it follotst,
the locality property guarantees that, if we can designllod@r this problem using TAG representation, that the overall
structure-editing operators on the genotype space, that genotype-phenotype mapping is Lipschitzian.
effect of the corresponding structure change in the ph@eoty In Figures 9, thes-trees for the LID problem have three
space is also local. adjoining addresses, namely at the root node, at the fodt, an
A first step is to show that the mapping from derivatioat the lower node (labeled witly). In the TAG literature,
tree to derived tree satisfies the locality property. Retalt adjunction at the root and foot nodes inaree are usually
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Fig. 9. Elementary trees @, for the LID problem

not used simultaneously, since it creates some redundanc!
the mapping between TAG-derivation trees and TAG-deriveu
trees. To investigate the effect of this redundancy of the,
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genotype-to-phenotype mapping on the LID problem, we
divided the TAG experiments into two sets of runs. In th-

first set, we used only two adjoining addresses (excludieg t 1o
root node: 2-ADD), while in the second, all three adjoinini
addresses were used (3-ADD).

B. Search Algorithm

For standard tree-based GP, the LID problem is an extrem:
difficult search problem. We have argued that this is a resi
of the operators available, and that the addition of poil
insertion and deletion operators should greatly amekottais ‘
difficulty. To demonstrate just how effective the operatars ¢ e
in smoothing the fitness landscape, we use a naive stochasuc
hill-climbing search (TAG-HILL), which would be readily fig 11,
caught in any local optima remaining in the fithess landscape
Specifically, the algorithm is a (1+1) evolutionary algbni,

i.e. the algorithm uses a population of 1. At each generation
either point insertion or point deletion is selected (with a
probability of 0.5). An individual is then generated by a Figures 10 and 11 show the proportion of successful runs
random application of the selected operator and then, it hfor TAGHILL (2-ADD and 3-ADD) based on the 275200 runs
better fitness than its parent, it replaces the parent, wiber conducted (137600 each for 2-ADD and 3-ADD).

it is discarded. This loop is repeated for the specified numbeThe results show that TAG-HILL outperforms GP on the

of steps. two families of LID problem instances by an extremely wide
margin. For the horizontal cut family, TAG-HILL 3-ADD
solved all the points with 100% reliability, with the except

of the four rightmost points (where the frequencies of sesce
In our experiments, the maximal number of steps in TAGvere 98%, 92%, 80%, and 72% respectively). TAG-HILL 2-

HILL is set to 100000 for each run. This gives the samBDD found the solution with 100% reliability fof;q,ge: UP tO
total number of evaluations as in [10], where the size df20, and solved the other problem instances with propation
population and the number of generations are set to 500 afdsuccess ranging from 50% to 98%. By comparison, as
200 respectively. Consequently, the maximal allowed numkghown in Figure 3, GP could only reliably find solutions withi
of fitness evaluation in TAG-HILL is the same as in the GIhe rangel2 < dia,ge¢ < 70. FOr the ranges < digrger < 12
experiments in [10]. For the horizontal cd, .; was fixed and70 < diarge¢ < 100 GP could sometimes find solutions,
as 256 whiled;,4.; was varied from 8 to 255. For each variedut for the rangesliq 4er = 8 or 9 andd;q,ger > 100, GP
drarget, 100 runs were allocated. Similarly, in the vertical cufailed to find any solutions.

the diqrge: Was fixed as 15 whilé,,, .. was varied from 16  For the results on the vertical cut family shown in Figure
to 32768. For eaclh,,q.: in [16..1024], we carried out 1004, GP runs were unreliable in finding solutions t@f,ge: >
runs, while for [1025..32768], we ran 100 trials for eachrpoi 500, and failed to find any solutions fa,,4.: > 1024. By

of the 118 equi-sampled points in that interval. Although thcontrast, TAG-HILL 3-ADD could solve the problems with
settings of Wyepen, and Wiermina: do not affect TAG-HILL  100% reliability fortq,4.: up to nearly 8000, and only failed
search, we set them the same as in [10], i.e. as 30 andt@ind solutions whert;, 4 > 11000. TAG-HILL 2-ADD

respectively. was even more successful, managing to solve problems with

FREQUENCY OF SUCCESS

1 15
TARGET LEAF NODES

Results of TAG-HILL on the ‘vertical cut’

V. RESULTS AND DISCUSSION

IV. EXPERIMENTS
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Fig. 12. Average number of fithess evaluations for the "twrial cut”, TARGET DEPTH
2-ADD

Fig. 13. Average number of fithess evaluations for the "tmrial cut’,
3-ADD

100% reliability fortq,4e¢ up to 17700 and only failing to

find solutions whert;,,ge: > 21000.

Figures 12, 13, 14 and 15 show the average number of
search steps for TAG-HILL (2-ADD and 3-ADD) to find
solutions (for those problem instances where 100% succt 10
was achieved). The almost linear scale suggests that, ©xc
for some extreme points, the landscape of the two famili
of LID problem instances is quite smooth for TAG-HILL.
This is no trivial matter, since Wheif,get (dearger) approach
their extreme values, the tree structures become expaitignti
sparse [39]. To see just how sparse, take the example of
leftmost point on the horizontal cut, whetg,, .= 256 and
diarget= 8. There is only one tree with that combination o
tiarget @Nddiarget, OUL OF \/f?? ~ 2497 trees in the search
space [39].

The results also show that the redundancy in the genoty I T o T P T RRRT a7 A
to-phenotype mapping helped TAG-HILL 3-ADD perform TARGET LEAF NODES
much better than TAG-HILL 2-ADD on problems of the "hori-
zontal cut” family, while performing much worse on pr0b|em§ig. 14. Average number of fithess evaluations for the "gattcut”, 2-ADD
of the "vertical cut” family. We explain this as follows. In-3
ADD, there are more available adjoining addresses than in 2-
ADD. When an insertion is to occur, in 2-ADD, many of the
adjunction addresses higher in the tree will already haes be
used, so that the probability of selecting a lower adjumctic
address (and hence deepening the tree) is increased. Ir
ADD, since more addresses higher in the tree are availak
the probability of selecting them is reduced more slowlthwi
fuller trees being the result.

The structural difficulty problem may play a very importan
part in the understanding of the behaviour of genetic progra
ming. One of the potential applications of this problem lies
explaining the code bloat effect. Code bloat in GP is a wel
documented phenomenon, in which the code size of evolv
programs increases rapidly during the evolutionary prece
[1], [2], [23], [45]. One potential cause of bloat may arise . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
from structural difficulty - if the smallest target solut®for a C ™ "arceTieafnopes ™
problem lie in regions Il and Ill, GP will probably be unabte t
find them. However, inserting redundant code into a solutiofig. 15. Average number of fitness evaluations for the "atttut’, 3-ADD
can move it from regions Il and Il into region I. Hence, GP
search may need to accumulate redundant code to allow it to

©
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stay in region | while traversing the fithess landscape td&ar [3]
accessible solutions.
By contrast with the work of Daida and his colleagues,

the experimental results here suggest that structuratudlifi [4]
might arise from the lack of local structure-editing operat
in GP. However, there is an alternative potential explamati 5]

namely that it is the hillclimbing search itself which allsw

our system to solve these problems well. To investigate this
further, we applied hill-climbing search to the standard GP[G]
representation, using standard subtree mutation as tla loc
search operator. We ran the experiments on the “ends” of the
“horizontal cut” and “vertical cut” experiments, the reg® 7]
where GP failed to find solutions when using genetic search as
in [10]. These runs still failed to find any solutions, indiog [8]
that the improved results above are not exclusively theltresu
of the hillclimbing search, but instead directly depend be t (g
representation and operators used. It is difficult to find any
other explanation of this softening of the structural diffig
problem, than that the local structure-editing operatoestiae
source of the improved performance.

(10]

VI. CONCLUSIONS ANDFURTHER WORK [11]

We have argued that GP’s problem of structural difficulty
results from the lack of local structure-editing operatansd |12
have pointed to GP’s fixed-arity expression tree represienta
as the underlying cause. Using a TAG-based representatéon,
have removed this fixed-arity limitation. In this repressiun,
we were able to design two local structure-editing opesator
namely point insertion and deletion. In passing, we noté thal4l
these operators are not problem-specific, but could beeppli [15]
to any TAG-representable problem. Applying these opesator
to Daida’s LID problem, we demonstrated that the operatord6l
significantly soften the structural difficulty problem in GP
The results also showed that redundancy in the genotype-to-
phenotype mapping — created by using redundant adjoining?
addresses — can affect the efficiency of the operators in
finding solutions in the tree structure space. [18]

In this paper, we used the rather naive hill-climbing search
strategy. Further work will investigate the behaviour dfiext [19]
adaptive search strategies. On a theoretical level, we rare e
deavouring to derive a formula to predict the convergemnue ti
for TAG-HILL on the LID problem. We are also attempting [20]
to analyze the behavior of GP using sub-tree crossover and/gy;
sub-tree mutation on the LID problem, to provide an anaiftic
measure of the structural difficulty problem, and to vakdat
our hypothesis that the difficulties are caused by the stratt
discontinuity of the standard sub-tree operators in GP.

(13]

[22]

23
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