
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 1

Representation and Structural Difficulty in Genetic
Programming

Nguyen, Xuan Hoai,Student Member, IEEE,R I (Bob) McKay, Senior Member, IEEE,and Daryl Essam

Abstract— Standard tree-based genetic programming suffers
from a structural difficulty problem, in that it is unable to s earch
effectively for solutions requiring very full or very narro w trees.
This deficiency has been variously explained as a consequence of
restrictions imposed by the tree structure, or as a result ofthe
numerical distribution of tree shapes. We show, that by using
a different tree-based representation and local (insertion and
deletion) structural modification operators, that this problem can
be almost eliminated even with trivial (stochastic hill-climbing)
search methods, thus eliminating the above explanations. We
argue instead, that structural difficulty is a consequence of the
large step size of the operators in standard genetic programming,
which is itself a consequence of the fixed-arity property embodied
in its representation.

Index Terms— Genetic Programming, Structural Difficulty,
representation, operator, insertion, deletion.

I. I NTRODUCTION

SINCE its very beginnings in the late 1980s [4], [20],
Genetic Programming (GP) has relied on tree represen-

tation as a key element. However recent work by Daida and
his colleagues [10], has cast doubt on our understanding
of tree representation for GP, by showing that the standard
representation and operators generate important anomalies.
They demonstrated that evolutionary search on this repre-
sentation is unable to effectively search all tree shapes, and
in particular, that very full or very narrow tree solutions
may be extraordinarily difficult to find, even when the fitness
function provides good guidance to the optimum solution.
These results have important ramifications for tree-based GP.
They suggest that GP will perform poorly on problems where
solutions require full or narrow trees (which we may not
even know in advance). Even more worrying, they raise the
possibility (since the difficulties arise at both ends of this
‘fullness’ spectrum) that this problem may arise just from
the requirement for a particular tree structure, and hence may
apply to any problem whose solutions are restricted to a
particular shape, of whatever degree of fullness.

Daida and his colleagues blame this difficulty on the in-
flexibility of the tree representation, while other explanations
have been discussed in the GP community based on the
relative sparseness of full and narrow trees (in which case we

This is a self-archived copy of the accepted paper, self-archived un-
der IEEE policy. The authoritative, published version can be found at
http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber=1613934&tag=1

Manuscript submitted November 30, 2004.
Revised version submitted August 31, 2005.
This work was undertaken while all authors were with the University of

New South Wales at the Australian Defence Force Academy.
Nguyen, Xuan Hoai is now at the Army Technical Academy of VietNam,

and Bob McKay is now at Seoul National University, Korea

would not need to be concerned about structural difficulty for
problems whose solutions have intermediate levels of fullness,
since they are not sparse).

In this work, we propose a new tree-based representation
and simple local operators for GP. Using these operators and
a very simple search strategy (stochastic hill-climbing),we
show that the structural difficulty problem is very largely
ameliorated, thus disposing of the two previous explanations
of the structural difficulty problem. Namely, that this problem
is not due simply to the tree representation, since the new
representation is also tree-based. It is also not a simple
consequence of the sparseness of particular tree structures,
since these are equally sparse under the new representation.
We propose a new hypothesis, based on the connectivity of
neighbourhood topologies, to explain the structural difficulty
problem.

In Section II, we re-visit the structural difficulty problem.
We propose a hypothesis for the cause of structural difficulty
in tree-based GP. We then introduce Tree Adjoining Grammars
(TAGs), which provide the basis for our alternative represen-
tation. Section III details the representation and introduces the
point insertion and deletion operators which are the key to
our approach, discussing their relationship with the distance
metric on both genotype and phenotype space. It also details
the stochastic hill-climbing search algorithm used in the paper.
Details of the experimental regime are given in Section IV,
while Section V presents the results of the experiments and
discusses their meaning. Finally, in Section VI, we examine
the implications of the experiments.

II. BACKGROUND AND PREVIOUS WORK

In this section, we review the structural difficulty problemin
GP and propose a new hypothesis on that problem. The section
ends with some basic concepts of tree adjoining grammars.

A. Structural Difficulty in Genetic Programming

In a series of papers [3], [5]–[10], Daida et. al. showed
that structure alone can pose great difficulty for standard
Genetic Programming (GP) search (using an expression tree
representation and sub-tree swapping crossover). In particular,
they delineated 4 regions of the search space of tree structures,
as shown in Figure 1
Most solutions found by standard GP search lie in region I.

To put it another way, it is easy for GP to find solutions to
problems which lie in region I. GP has greater difficulty in
searching the next region, region II (IIa, IIb). By the time

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 2

IVa

IVb

IIa

IIb

I

IIIa

IIIb

2
1

2
3

2
5

2
7

2
9

2
11

2

13

2
15

2

17

2
19

2

21

2
23

2

25

2
27

N
u
m

b
e
r

o
f
N

o
d
e
s

2520151050

Depth

Fig. 1. Four regions in the space of tree structures. Reprinted with permission
from [10]

we come to region III (IIIa, IIIb, respectively very wide
and very narrow trees), GP is effectively unable to search in
this region, and will not find solutions there. Of course once
the ratio of depth to number of nodes becomes too large or
too small, it is impossible to construct trees. There are no
feasible tree structures in region IV (IVa, IVb). Daida and
his colleagues noted that the boundaries of regions II and
III are almost linear, meaning that they account for the vast
majority of tree structures, even when, as is usual in practical
applications of GP, a relatively small search space bound is
used.

To further validate this analysis, in recent work [10], Daida
et al. specified a test problem known as LID. In the LID
problem for GP, there is only one arity 2 function, namedjoin ,
and one terminal namedleaf. The raw fitness of an individual
tr depends purely on its structural difference from the target
solution. It is defined as follows:

Fitnessraw(tr) = Metricdepth +Metricterm (1)

WhereMetricdepth andMetricterm are defined as follows:

Metricdepth = Wdepth × (1−
|dtarget − dactual|

dtarget
) (2)

2
16

2
12

2
8

2
4

2
0

N
o
d
e
s

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100
2

Depth

Fig. 2. The ’horizontal and vertical cuts’. Reprinted with permission from
[10]

2
6
 2
9
 2

12
 2

15

N
o
d
e
s

8 9
10

2 3 4 5 6 7 8 9
100

2

Target Depth

100

80

60

40

20

0S
u
cc

e
ss

 R
at

e
 (

%
)

Fig. 3. Proportion of Success for GP on the ’Horizontal cut’.Reprinted with
permission from [10]

Metricterm = Wterm × (1−
|ttarget − tactual|

ttarget
) (3)

if Metricdepth = Wdepth

= 0, Otherwise.

wheredtarget, andttarget are the depth and number of leaves
of the target solution, anddactual andtactual are the depth and
number of leaves of the individual (tree)tr. In [10], Wdepth

and Wterm are two weighted numbers satisfyingWdepth +
Wterm = 100. We note that the sizes of a tree in the LID
problem is related to itsttarget by the equation:s = 2 ×
ttarget − 1.

In [10], two families of LID problem instances were used
to investigate the search space of tree structures, namely
”horizontal cut” and ”vertical cut”. In the first family, the
ttarget was fixed at 256 and thedtarget was varied from 8
to 255. In the second,dtarget was fixed at 15 whilettarget
was varied from 16 to 32768. For a GP system using either
size or depth as the chromosome complexity measure, these
bounds on size and depth (256 and 15) are quite typical. Figure
2 is a simplified version of Figure 1 with the positions of the
problem instances superimposed on it.

Figures 3 and 4 show the results, based on 90000 runs, of
GP (standard representation with subtree crossover) on thetwo
families of problem instances. We note that in Figure 4, the x-
axis is the number of target nodes (s), which is approximately
twice the value ofttarget. The upper parts of the figures show
the proportion of successful runs, while the lower show the
region to which each problem instance belongs (the cross sign
means region I, while the vertical line means regions II and
III).

The results in the two figures, surprisingly, show that

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 3

2
5

2
7

2
9

2
11

2
13

2
15

N
o
d
e
s

2
5 2

7 2
9 2

11 2
13 2

15

Target Nodes

100

80

60

40

20

0S
u
cc

e
ss

 R
at

e
 (

%
)

Fig. 4. Proportion of Success for GP on the ’Vertical cut’. Reprinted with
permission from [10]

standard GP, using expression tree representation and sub-
tree-swapping crossover, performed extremely poorly on the
two families of problem instances, especially for verticaland
horizontal cut problems lying in regions II and III. This
provides strong evidence that standard GP has considerable
difficulty in finding specific structures. Daida et al. [10] went
further, in showing that these results cannot be fully explained
by the sparsity of tree structures in regions II and III (i.e.they
are not an equilibrium problem). Their explanation conjectured
that the expression tree representation was itself the main
cause of the structural difficulty.

1) Structural Difficulty and Operator Step Size:Elaborating
on Daida’s explanation, we conjecture that in standard GP,
the problem lies in the structural step size of the structure
editing operators. In other words, sub-tree crossover and sub-
tree mutation, the two main operators in GP, are highly
structurally discontinuous. Hence, despite the presence of
selection pressure, the probability of exploring regions 2and
3 in the space of tree structures is low. We further argue that
this discontinuity is a consequence of the fixed-arity property
of standard GP representation (that is, each node in the tree
has a fixed number of children, determined by its content), in
that fixed arity makes it difficult to design operators with a
controllable step size.

There are at least two ways to validate this hypothesis. One
is to analytically analyze the probability of reaching regions 2
and 3 using the particular operator set; the other is to design
structure editing operators and show that they can help GP to
solve the problem of structural difficulty. We adopt the second
course in this paper, making use of a formalism derived from
natural language processing, Tree Adjoining Grammars.

B. Tree Adjoining Grammars

Tree adjoining grammars (TAGs) are tree-generating and
analysis systems, first proposed by Joshi et al in [14]. Tree
Adjoining Grammars (TAGs) have become increasingly im-
portant in Natural Language Processing (NLP) since their
introduction.

The aim of TAGs is to more directly represent the structure
of natural languages than is possible in Chomsky languages,
and in particular, to represent the process by which natural
language sentences can be built up from a relatively small
set of basic linguistic units by the inclusion of insertable
sub-structures. Thus ‘The cat sat on the mat’ becomes ‘The
big black cat sat lazily on the comfortable mat which it
had commandeered’ by the subsequent insertion of the ele-
ments ‘big’, ‘black’, ‘lazily’, ‘comfortable’, and ‘whichit had
commandeered’. In context-free grammars (CFG)(Chomsky’s
formalisms of type 2), the relationship between these two
sentences can only be discerned by detailed analysis of their
derivation trees; in a TAG representation, the derivation tree
of the latter simply extends the frontier of the former. To put
it another way, the edit distance between the derivation trees
of these closely related sentences, is much smaller in a TAG
representation than in a CFG representation.

At first, the only tree rewriting operation in TAGs was
adjunction (described below) and the formalisms were called
tree adjunct grammars. After a sequence of developments
in [15]–[18], a new operation, called substitution (described
below), was added and the formalisms have subsequently
been known as tree adjoining grammars. Another operation,
substitution, does not change the family of languages that
can be represented by TAG grammars, and in that sense is
a redundant element. However, substitution often dramatically
reduces the grammar complexity required to represent typical
(natural and computer) languages, and hence is important for
practical application.

From their early days, TAGs (tree adjunct grammars and
tree adjoining grammars) were shown to possess a number
of invaluable properties for handling various issues in natural
language processing [16], [21], [22]. Some of these have
natural analogues in GP. A comprehensive overview of TAGs
can be found in [19].

Definition 2.1 (Tree Adjoining Grammars)
A tree adjoining grammar is a tree-rewriting system consisting
of a quintuple (

∑
, N, I, A, S), where:

1)
∑

is a finite set of terminal symbols.

2) N is a finite set of non-terminal symbols:N ∩
∑

= ∅.

3) S is a distinguished non-terminal symbol:S ∈ N .

4) I is a finite set of finite trees, called initial trees (or
α-trees).
In an initial tree, all interior nodes are labeled by
non-terminal symbols, while the nodes on the frontier
are labeled either by terminal or non-terminal symbols.
Non-terminal symbols on the frontier of an initial tree

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 4

NP

Hoai

NP

Woman
V VP*

VP

has

α1 α2 α3 β1

NP VP

NP

loved

S

V

Fig. 5. A simple TAG for some English sentences

are marked with↓ (for substitution).

5) A is a finite set of finite trees, called auxiliary trees (or
β-trees).
In an auxiliary tree, all internal nodes are labeled by
non-terminal symbols, and a node on the frontier is
labeled either by a terminal or non-terminal symbol.
The frontier must contain a unique, distinguished node,
the foot node, labeled by the same non-terminal symbol
as the tree’s root node, and marked with an asterisk
(*); other nodes on the frontier labeled by non-terminal
symbols are marked with↓ (for substitution).

The trees inE = I∪A are called elementary trees. Initial trees
and auxiliary trees are denoted asα andβ trees respectively.
A tree with its root labeled by a non-terminal symbol X is
called an X-type elementary tree.

In essence, anα-tree which has terminal symbols on its
frontier, is just like a minimal complete sentence, while aβ-
tree is a minimal recursive structure which may be used to
modify complete sentences (by using adjunction as described
below).

TAG Example. G1={
∑

, N, I, A, S}, where
∑

is a set of
English words,N = {S, V P,NP, V } andE = I ∩A is given
in Figure 5.

The key operations used with tree-adjoining grammars are
the adjunction and substitution of trees. Adjunction builds a
new (derived) treeγ from an auxiliary treeβ and another tree
α. If α has an interior node labeledA, andβ is an A-type
tree, the adjunction ofβ into α producesγ as follows: Firstly,
the sub-treeα1 rooted at A is temporarily disconnected from
α. Next, β is attached to replace the sub-tree. Finally,α1 is
attached back to the foot node ofβ. γ is the final derived tree
achieved from this process. Adjunction is illustrated in Figure
6. Finally, for reference, a node labeledA in an elementary
tree is called an adjoining address, if there is an A-typebeta

tree (i.e if there is abeta tree that can adjoin to that address).

In substitution, a non-terminal node on the frontier of an
elementary tree is substituted by an initial tree whose rootis
labeled with the same non-terminal. Substitution is illustrated
in Figure 7.
The addition of substitution does not change the class of

languages defined by TAG, but it helps to make the formalism
more compact by reducing the size of the elementary tree set.

A special class of TAGs known as lexicalised TAGs (LT-
AGs) can be defined as follows [19]
Definition 2.4 (Lexicalised TAGs)
A lexicalised tree adjoining grammar (LTAG) is a tree adjoin-
ing grammar (TAG) satisfying the requirement that each of its

V
has

VP

V

S

NP

X

X

X*

X

X

loved

NP VP

NP

loved

S

V

α3

NP

VP

β1

has

VP

VP*V

Fig. 6. Adjunction Operation

X

X

X

VP

NP

loved

S

V

NP

Hoai

NP

Hoai

α2 α3

NP VP

NP

loved

S

V

Fig. 7. Substitution

elementary trees contains a terminal node.
Although there are more constraints on LTAGs, it has been

shown that LTAGs are equivalent to TAGs (i.e. capable of
generating the same languages). In the remainder of this paper,
we will deal only with LTAGs, and use the terminology, tree
adjoining grammar, interchangeably to also refer to LTAGs,
denoting an LTAG with the notationGlex.

C. Derivation Trees in Tree Adjoining Grammars

In TAGs, there is a distinction between derivation and
derived trees, where the former encodes the sequence of
adjunctions and substitutions used to generate the latter.There
are a number of definitions of TAG derivation trees in the
literature [19], [37], [42], [47]; the variant we use is described
below.

A TAG derivation tree is a labeled object tree satisfying
the following requirements. The root node is labeled with the
name of an S-type initial (alpha) tree; the nodes other than the
root are labeled with names of auxiliary (β) trees. Each link
between a parent and a child node is labeled with an index,
indicating the location in the elementary tree of the parent
node to which the auxiliary tree in the child node is to be
adjoined. At most one adjunction is permitted at each location.
Each node also has attached a list of initial trees (lexemes)to
be substituted into open (i.e. unadjoined) locations (lexicons).
The corresponding tree generated by performing the specified
process of adjunction and substitution is known as the derived
tree. Figure 8 shows the structure of this formulation of TAG
derivation and derived trees. Note that the derivation trees of
a CFG correspond to the derived trees of a TAG.

The set of derived trees which may be generated by a TAG
is known as its tree language, while the set of strings which

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 5

VP

Hoai

NP

S

2

VP3

β1

α3α1, α2

womanloved

NPV

V

Has

1

Lexemes

Lexemes

Lexemes Lexemes

LexemesLexemes

1

21

Fig. 8. TAG derivation tree and corresponding derived tree

may be generated from these derived trees is known as its
string language.

In this form of derivation tree, substitution is left to last
(i.e. all adjunctions are carried out before any substitutions).
To simplify the figures in the rest of this paper, substitution
will be omitted from the figures, as it is unimportant for the
grammars used.

1) Some Properties of TAGs:TAG derivation trees, as
described above, have an important property. It is possibleto
remove any sub-tree, and the resultant tree is still a perfectly
valid TAG derivation tree, and its derived tree is still a
completed tree. In other words, unlike GP structure trees or
CFG derivation trees, the arity (number of children) of each
node in a TAG derivation tree is not fixed. This property is
crucial to what follows in this paper. Apart from this non-
fixed-arity property, TAGs have a number of other important
properties:

• The TAG string languages strictly include CFG languages
and are strictly included in indexed languages.

• The set of CFG derivation tree sets is strictly included in
the TAG tree languages.

• For every context-free grammarG, there is an algorithmic
derivation of an LTAGGlex whose tree language is
the set ofG derivation trees.Glex is said to strongly
lexicaliseG. Informally, context-free grammars may be
algorithmically converted to TAGs [19], [34]–[36], [38].

Thus, the TAG representation is sufficiently powerful to cover
the range of search spaces used in grammar guided genetic
programming (GGGP) [48], and hence also standard GP.

III. M ETHODOLOGY

In this section, we introduce the TAG representation,
operators and search algorithm we used to investigate the
problem of structural difficulty.

A. Representation and Operators

1) TAG Representation for Genetic Programming:As a
problem representation, we used the LTAG derivation trees
defined in the previous section. Thus, the domain of the
problem may be delineated by an LTAG grammar,Glex. Since
LTAGs can generate the tree set of context-free languages

TABLE I

PSEUDOCODE FORINITIALISATION PROCEDURE

1) FOR i = 1 TO POPSIZE DO
2) Choose a a random size l between

MINSIZE and MAXSIZE.
3) Pick an α-tree α1 at random

and set tree T = α1.
4) FOR j = 1 TO l-1 DO
5) Set V ={ node n in T such that n

has at least one unused
adjoining address}

6) Pick a node n in V in a
uniformly random manner.

7) Randomly pick a NULL adjoining
address a in elementary tree n.

8) Among all β-trees in the
auxiliary trees of Glex

that can adjoin to a,
choose a tree t.

9) Adjoin t to a in T and update T.
10) ENDFOR
11) Set individual i-th as T
12) ENDFOR

(and some context-sensitive languages), the TAG-based rep-
resentation can be applied to any problems whose description
languages are context-free, as well as to some context-sensitive
problems.

While the search space for a TAG-based representation is a
set of TAG derivation trees, fitness evaluation is carried out on
the derived trees decoded from them. Thus the TAG-based rep-
resentation provides a natural genotype-phenotype mapping,
in which genotypes are TAG derivation trees, and phenotypes
are their corresponding derived trees. A TAG-based grammar
guided genetic programming (called TAG3P) using sub-tree
mutation and crossover was described in detail in [26]. For the
present purposes, we require only the initialisation procedure.

2) Initialisation Procedure:We define here the algorithm
for creating an initial random population of individual (Glex

derivation trees). It is an iteration of the process for generating
an individual (Glex derivation tree) at random. The process
starts with choosing a random size in a predefined range of
integer numbers. Then, it proceeds by first randomly picking
an α-tree from the initial tree set inGlex to make an initial
Glex derivation tree. This derivation tree is subsequently
adjoined with β-trees drawn at random from the auxiliary
tree set inGlex using adjunction at random places. This
process finishes when the randomly chosen size is reached.
The initialization procedure for TAG3P is given in table I

where MINSIZE and MAXSIZE are adjustable parameters
for designating the range of individual sizes. For this algorithm
to be useful, we need a guarantee that the process always stops
with the desired result. However, it may not be obvious that
this process will finish and give a population of validGlex

derivation trees. We present a proof that this is the case.
Theorem 1:Assuming that everyα-tree and everyβ-tree in

Glex can be adjoined by at least oneβ-tree, the initialisation
procedure above always finishes and gives the desired results.
Proof: The only steps in the algorithm which could fail are
steps 5 to 8 (step 3 succeeds because the definition of TAG
requires the set ofα-trees inGlex to be non-empty, while the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 6

other steps are simply housekeeping).
In step 5, ifj = 1, thenV ={α1} (since by hypothesis,α1

has an open adjoining address). Otherwise, the last-addedβ-
tree inT must be inV (again by hypothesis). In either case,
V is non-empty, so that steps 6 and 7 will also succeed; step
8 then succeeds on the basis of the previous conclusions.

The setV is at most linear in the size of the tree, and
the selection process is repeatedI-1 times, so that the time
complexity for randomly creating an individual from (Glex) is
quadratic in its size:

Corollary of proof: The time complexity for initialising an
individual is O(l2), where l is the size of the individual.
Therefore, the time complexity of the initialising procedure
is M ×l2, where M is the population size.

3) TAG Operators: The non-fixed-arity property permits
the definition of a wide range of operators. It is straightforward
to define analogues of the wide range of sub-tree crossover
and mutation operators used in standard tree-based GP [26].
Equally important, it is simple to define more biologically-
motivated operators such as translocation and replication[27].
In the current context, we argue that the cause of GP’s
structural difficulty problem is the highly discontinuous nature
of the two main operators, sub-tree crossover and mutation.To
investigate this, we make use of TAG’s flexibility to introduce
point insertion and deletion operators, which by their local
nature permit more fine-grained search of the structure space,
than is possible with the standard GP operators.

• Point Insertion
If the size of the considered individual is less than
MAXSIZE, insertion randomly selects a node on the
frontier of the derivation tree, and adjoins a newβ-tree
to it

• Point Deletion
If the size of the individual is greater than 1, deletion
selects aβ-tree on the frontier of the derivation tree, and
deletes it.

4) Properties of the TAG Genotype-Phenotype Mapping:It
is clear that point insertion and deletion are local operators in
the genotype (derivation tree) space - using edit distance as a
metric [25], [28], the distance between parent and child is one.
However TAG representation relies on a genotype to pheno-
type mapping. We would like to know that point insertion and
deletion act as local operators in the phenotype space. This
requires us to demonstrate that the mapping satisfies Palmer’s
[29] locality property, namely that small changes in genotype
result in small changes in phenotype. After “redundancy” [32],
[41], [43], [44], the “locality property” is possibly the most
studied aspect of genotype-phenotype mapping in the field of
evolutionary algorithms (EAs). A large number of EA works
have shown the importance, across many contexts, of the
locality property for mappings from genotype to phenotype
spaces. [11]–[13], [24], [30]–[32], [40], [46]. In this paper,
the locality property guarantees that, if we can design local
structure-editing operators on the genotype space, that the
effect of the corresponding structure change in the phenotype
space is also local.

A first step is to show that the mapping from derivation
tree to derived tree satisfies the locality property. Recallthat

the tree edit distance between two labeled trees is defined as
the length of the shortest sequence of editing operations that
transforms one tree to the other. The editing operations are
deleting a node, inserting a node, or changing the label of a
node. Each basic operation has the same cost, assigned as 1
unit. With the editing distance used as the tree metric, the
mapping between TAG-derivation trees and derived trees is
Lipschitzian [33], so that the mapping has the locality property.

Theorem 2:For every TAGGlex, suppose thatf is the map
used to decodeGlex derivation trees into the corresponding
derived trees. Then there is a fixed constantM > 0 such that,
for all pairs ofGlex derivation treesu, v,

d(f(u), f(v)) ≤ M × d(u, v) (4)

wheref(u) andf(v) are the two derived trees corresponding
to u andv respectively, andd is the tree edit distance.
Proof: Let M be the maximal number of nodes in any of the
elementary treesE of Glex. If the tree edit distance between
u andv is k, then there arek operations involving the addition
and/or deletion of nodes required to transformu to v (and vice
versa). Each node inu (or v) is labeled by an elementary tree
t ∈ E, and t contains at mostM nodes. Moreover, since an
adjunction between two elementary trees does not change the
meaning or the number of nodes, it follows that the number of
node differences (using node addition, deletion, or relabelling)
betweenf(u) and f(v), is at mostM × k. Thus the tree
editing distance betweenf(u) andf(v) is less than or equal
to M × d(u, v).

5) TAG Representation for the LID Problem:Daida’s LID
problem was described in Section II. Here, we describe
the specific implementation used to encode it into a TAG
representation. The context-free grammar is as follows:
G = {N = {S}, T = {join, leaf}, P, {S}} where the rule
set P is defined as:
S → SjoinS

S → leaf

The corresponding LTAG (using Joshi’s algorithm - [19])
is Glex = {V = {S}, T = {join, leaf}, I, A) whereI ∪ A

is shown in Figure 9.

With this grammar, the mapping from the derived tree to
the corresponding GP tree representation (i.e. the phenotype)
is also Lipschitzian: the derived tree has a skeleton of non-
terminals S, to each of which is attached exactly one terminal
(either join or leaf). If each terminal is moved upwards
to replace its corresponding non-terminal S, we obtain the
standard GP structure tree. Thus, the edit distance between
two derived trees is exactly twice the distance between the
corresponding GP structure trees. Since the composition of
two Lipschitzian mappings is also Lipschitzian, it followsthat,
for this problem using TAG representation, that the overall
genotype-phenotype mapping is Lipschitzian.

In Figures 9, theβ-trees for the LID problem have three
adjoining addresses, namely at the root node, at the foot, and
at the lower node (labeled withS). In the TAG literature,
adjunction at the root and foot nodes in aβ-tree are usually

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 7

βα

Leaf

S

S

Leaf

Join S*

S

Fig. 9. Elementary trees ofGlex for the LID problem

not used simultaneously, since it creates some redundancy in
the mapping between TAG-derivation trees and TAG-derived
trees. To investigate the effect of this redundancy of the
genotype-to-phenotype mapping on the LID problem, we
divided the TAG experiments into two sets of runs. In the
first set, we used only two adjoining addresses (excluding the
root node: 2-ADD), while in the second, all three adjoining
addresses were used (3-ADD).

B. Search Algorithm

For standard tree-based GP, the LID problem is an extremely
difficult search problem. We have argued that this is a result
of the operators available, and that the addition of point
insertion and deletion operators should greatly ameliorate this
difficulty. To demonstrate just how effective the operatorsare
in smoothing the fitness landscape, we use a naive stochastic
hill-climbing search (TAG-HILL), which would be readily
caught in any local optima remaining in the fitness landscape.
Specifically, the algorithm is a (1+1) evolutionary algorithm,
i.e. the algorithm uses a population of 1. At each generation,
either point insertion or point deletion is selected (with a
probability of 0.5). An individual is then generated by a
random application of the selected operator and then, if it has
better fitness than its parent, it replaces the parent, otherwise
it is discarded. This loop is repeated for the specified number
of steps.

IV. EXPERIMENTS

In our experiments, the maximal number of steps in TAG-
HILL is set to 100000 for each run. This gives the same
total number of evaluations as in [10], where the size of
population and the number of generations are set to 500 and
200 respectively. Consequently, the maximal allowed number
of fitness evaluation in TAG-HILL is the same as in the GP
experiments in [10]. For the horizontal cut,ttarget was fixed
as 256 whiledtarget was varied from 8 to 255. For each varied
dtarget, 100 runs were allocated. Similarly, in the vertical cut,
the dtarget was fixed as 15 whilettarget was varied from 16
to 32768. For eachttarget in [16..1024], we carried out 100
runs, while for [1025..32768], we ran 100 trials for each point
of the 118 equi-sampled points in that interval. Although the
settings ofWdepth and Wterminal do not affect TAG-HILL
search, we set them the same as in [10], i.e. as 30 and 70
respectively.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

110

TARGET DEPTH

F
R

E
Q

U
E

N
C

Y
 O

F
 S

U
C

C
E

S
S

3−ADD

2−ADD

Fig. 10. Results of TAG-HILL on the ’horizontal cut’

0 0.5 1 1.5 2 2.5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

110

TARGET LEAF NODES

F
R

E
Q

U
E

N
C

Y
 O

F
 S

U
C

C
E

S
S

3−ADD
2−ADD

Fig. 11. Results of TAG-HILL on the ’vertical cut’

V. RESULTS AND DISCUSSION

Figures 10 and 11 show the proportion of successful runs
for TAGHILL (2-ADD and 3-ADD) based on the 275200 runs
conducted (137600 each for 2-ADD and 3-ADD).
The results show that TAG-HILL outperforms GP on the

two families of LID problem instances by an extremely wide
margin. For the horizontal cut family, TAG-HILL 3-ADD
solved all the points with 100% reliability, with the exception
of the four rightmost points (where the frequencies of success
were 98%, 92%, 80%, and 72% respectively). TAG-HILL 2-
ADD found the solution with 100% reliability fordtarget up to
120, and solved the other problem instances with proportions
of success ranging from 50% to 98%. By comparison, as
shown in Figure 3, GP could only reliably find solutions within
the range12 < dtarget < 70. For the ranges9 < dtarget < 12
and 70 < dtarget < 100 GP could sometimes find solutions,
but for the rangesdtarget = 8 or 9 anddtarget > 100, GP
failed to find any solutions.

For the results on the vertical cut family shown in Figure
4, GP runs were unreliable in finding solutions forttarget >

500, and failed to find any solutions forttarget > 1024. By
contrast, TAG-HILL 3-ADD could solve the problems with
100% reliability forttarget up to nearly 8000, and only failed
to find solutions whenttarget > 11000. TAG-HILL 2-ADD
was even more successful, managing to solve problems with

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 8

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5
x 10

4

TARGET DEPTH

N
U

M
B

E
R

 O
F

 E
V

A
LU

A
T

IO
N

S

Fig. 12. Average number of fitness evaluations for the ”horizontal cut”,
2-ADD

100% reliability for ttarget up to 17700 and only failing to
find solutions whenttarget > 21000.

Figures 12, 13, 14 and 15 show the average number of
search steps for TAG-HILL (2-ADD and 3-ADD) to find
solutions (for those problem instances where 100% success
was achieved). The almost linear scale suggests that, except
for some extreme points, the landscape of the two families
of LID problem instances is quite smooth for TAG-HILL.
This is no trivial matter, since whenttarget (dtarget) approach
their extreme values, the tree structures become exponentially
sparse [39]. To see just how sparse, take the example of the
leftmost point on the horizontal cut, wherettarget= 256 and
dtarget= 8. There is only one tree with that combination of
ttarget anddtarget, out of 4

255

√
π2553

≈ 2497 trees in the search
space [39].

The results also show that the redundancy in the genotype-
to-phenotype mapping helped TAG-HILL 3-ADD perform
much better than TAG-HILL 2-ADD on problems of the ”hori-
zontal cut” family, while performing much worse on problems
of the ”vertical cut” family. We explain this as follows. In 3-
ADD, there are more available adjoining addresses than in 2-
ADD. When an insertion is to occur, in 2-ADD, many of the
adjunction addresses higher in the tree will already have been
used, so that the probability of selecting a lower adjunction
address (and hence deepening the tree) is increased. In 3-
ADD, since more addresses higher in the tree are available,
the probability of selecting them is reduced more slowly, with
fuller trees being the result.

The structural difficulty problem may play a very important
part in the understanding of the behaviour of genetic program-
ming. One of the potential applications of this problem liesin
explaining the code bloat effect. Code bloat in GP is a well-
documented phenomenon, in which the code size of evolved
programs increases rapidly during the evolutionary process
[1], [2], [23], [45]. One potential cause of bloat may arise
from structural difficulty - if the smallest target solutions for a
problem lie in regions II and III, GP will probably be unable to
find them. However, inserting redundant code into a solution,
can move it from regions II and III into region I. Hence, GP
search may need to accumulate redundant code to allow it to

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

TARGET DEPTH

N
U

M
B

E
R

 O
F

 E
V

A
LU

A
T

IO
N

S

Fig. 13. Average number of fitness evaluations for the ”horizontal cut”,
3-ADD

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

2

3

4

5

6

7

8

9
x 10

4

TARGET LEAF NODES

N
U

M
B

E
R

 O
F

 E
V

A
LU

A
T

IO
N

S

Fig. 14. Average number of fitness evaluations for the ”vertical cut”, 2-ADD

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8
x 10

4

TARGET LEAF NODES

N
U

M
B

E
R

 O
F

 E
V

A
LU

A
T

IO
N

S

Fig. 15. Average number of fitness evaluations for the ”vertical cut”, 3-ADD

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 9

stay in region I while traversing the fitness landscape towards
accessible solutions.

By contrast with the work of Daida and his colleagues,
the experimental results here suggest that structural difficulty
might arise from the lack of local structure-editing operators
in GP. However, there is an alternative potential explanation,
namely that it is the hillclimbing search itself which allows
our system to solve these problems well. To investigate this
further, we applied hill-climbing search to the standard GP
representation, using standard subtree mutation as the local
search operator. We ran the experiments on the “ends” of the
“horizontal cut” and “vertical cut” experiments, the regions
where GP failed to find solutions when using genetic search as
in [10]. These runs still failed to find any solutions, indicating
that the improved results above are not exclusively the result
of the hillclimbing search, but instead directly depend on the
representation and operators used. It is difficult to find any
other explanation of this softening of the structural difficulty
problem, than that the local structure-editing operators are the
source of the improved performance.

VI. CONCLUSIONS ANDFURTHER WORK

We have argued that GP’s problem of structural difficulty
results from the lack of local structure-editing operators, and
have pointed to GP’s fixed-arity expression tree representation
as the underlying cause. Using a TAG-based representation,we
have removed this fixed-arity limitation. In this representation,
we were able to design two local structure-editing operators,
namely point insertion and deletion. In passing, we note that
these operators are not problem-specific, but could be applied
to any TAG-representable problem. Applying these operators
to Daida’s LID problem, we demonstrated that the operators
significantly soften the structural difficulty problem in GP.
The results also showed that redundancy in the genotype-to-
phenotype mapping — created by using redundant adjoining
addresses — can affect the efficiency of the operators in
finding solutions in the tree structure space.

In this paper, we used the rather naive hill-climbing search
strategy. Further work will investigate the behaviour of other
adaptive search strategies. On a theoretical level, we are en-
deavouring to derive a formula to predict the convergence time
for TAG-HILL on the LID problem. We are also attempting
to analyze the behavior of GP using sub-tree crossover and/or
sub-tree mutation on the LID problem, to provide an analytical
measure of the structural difficulty problem, and to validate
our hypothesis that the difficulties are caused by the structural
discontinuity of the standard sub-tree operators in GP.

VII. A CKNOWLEDGMENT

The authors would like to thank Jason Daida for permission
to reproduce figures from his papers in this article.

REFERENCES

[1] W. Banzhaf et al,Genetic Programming: An Introduction, Morgan
Kaufmann, CA, 1998.

[2] T. Blickle and L. Thiele L., Genetic Programming and Redundancy,
in J. Hopf, editor,Genetic Algorithms within the Framework of Evo-
lutionary Computation, 33-38, 1994.

[3] O.A. Cha et al, Characterizing a Tunably Difficult Problem in Genetic
Programming,Proceedings of Genetic Algorithms and Evolutionary
Computation Conference (GECCO 2000), Morgan Kaufmann, 395-402,
2000.

[4] N.L. Cramer, A Representation for the Adaptive Generation of Sequen-
tial Programs,Proceedings of an International Conference on Genetic
Algorithms and the Applications, 183-187, 1985.

[5] J.M. Daida et al, Challenges with Verification, Repeatability, and
Meaningful Comparisons in Genetic Programming,Genetic Program-
ming 1997: Proceedings of the Second Annual Conference, Morgan
Kaufmann, 64-69, 1997.

[6] J.M. Daida et al, Analysis of Single-Node (Building) Blocks in Genetic
Programming, in L. Spector, W.B. Langdon et al, editors,Advances in
Genetic Programming III, The MIT Press, 217-241, 1999.

[7] J.M. Daida et al, What Makes a Problem GP-Hard? Analysis of a Tun-
ably Difficult Problem in Genetic Programming,Genetic Programming
and Evolvable Machines, 2, 165-191, 2001.

[8] J.M. Daida, Limit to Expression in Genetic Programming:Lattice-
Aggregate Modeling,Proceedings of the Congress on Evolutionary
Computation (CEC 2002), IEEE Press, 273-278, 2002.

[9] J.M. Daida and A.M. Hilss, Identifying Structural Mechanism in Stan-
dard GP,Proceedings of Genetic Algorithms and Evolutionary Compu-
tation Conference (GECCO’2003), LNCS 2724, Springer-Verlag, 1639-
1651, 2003.

[10] J.M. Daida et al, What Makes a Problem GP-Hard? Validating a
Hypothesis of Structural Causes,Proceedings of Genetic Algorithms
and Evolutionary Computation Conference (GECCO 2003), LNCS
2724, Springer-Verlag, 1665-1677, 2003.

[11] S. Droste and D. Wiesmann, On Representation and
Genetic Operators in Evolutionary Algorithms, Accessed at:
citeseer.ist.psu.edu/droste98representation.html on 30 oct 2004.

[12] J. Gottlieb and G. R. Raidl, Characterizing Locality inDecoder-
Based EAs for the Multidimensional Knapsack Problem,Proceedings
of Artificial Evolution, LNCS 1829, Springer-Verlag, 38-52, 1999.

[13] C. Igel, Causality of Hierarchical Variable Length Representations,
Proceedings of the 1998 IEEE World Congress on Computational
Intelligence, IEEE Press, 324-329, 1998.

[14] A.K. Joshi et al, Tree Adjunct Grammars,Journal of Computer and
System Sciences, 10 (1), 136-163, 1975.

[15] A.K. Joshi, Constraints on Structural Descriptions: Local Transforma-
tion, SIAM Journal of Computing, June, 1977.

[16] A.K. Joshi, How Much Context-sensitivity is Necessaryfor Charac-
terizing Structural Description, in D. Dowty et al, editors, Natural
Language Processing - Theoretical, Computational and Psychological
Perspectives, Cambridge University Press, 1985.

[17] A.K. Joshi, An Introduction to Tree Adjoining Grammars, in A.
Manaster-Ramer, editor,Mathematics of Language, John Benjamins,
Amsterdam, 1987.

[18] A.K. Joshi et al, The Convergence of Mildly Context-Sensitive Gram-
mar Formalisms, in P. Sells et al, editors,Foundation Issues in Natural
Language Processing, MIT Press, MA, 1991.

[19] A.K. Joshi and Y. Schabes, Tree Adjoining Grammars, in G. Rozenberg
and A. Saloma, editors,Handbook of Formal Languages, Springer-
Verlag, 69-123, 1997.

[20] J.R. Koza,Genetic Programming: On the Programming of Computers
by Natural Selection, MIT Press, MA, 1992.

[21] A. Kroch and A.K. Joshi, Linguistic Relevance of Tree Adjoining
Grammars,Technical Report MS-CIS-85-18, Department of Computer
Science and Information Science, University of Pennsylvania, April,
1985.

[22] A. Kroch, Unbounded Dependencies and Subjacency in a Tree Adjoin-
ing Grammar, In A. Manaster-Ramer, editor,Mathematics of Language,
John Benjamins, Amsterdam, 1987.

[23] W.B. Langdon and R. Poli,Foundations of Genetic Programming,
Springer-Verlag, Germany, 2002.

[24] P.K. Lehre and P.C. Haddow, Developmental Mapping and Phenotypic
Complexity, Proceedings of Congress on Evolutionary Computation
(CEC 2003), IEEE Press, 62-65, 2003.

[25] S.Y. Lu, The Tree-to-Tree Distance and Its Applicationin Cluster
Analysis, IEEE Transaction on PAMI, 1(2), 219-222, 1979.

[26] Nguyen Xuan Hoai et al, Some Experimental Results with Tree Adjunct
Grammar Guided Genetic Programming,Proceedings of the Fifth
European Conference on Genetic Programming, LNCS 2278, Springer-
Verlag, 328-337, 2002.

[27] Nguyen Xuan Hoai et al, Genetic Transposition in Tree Adjoining
Grammar-Guided Genetic Programming: The Relocation Operator,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. ?, NO.?, ?MONTH 2006 10

Proceedings of the 5th International Conference on Simulated Evo-
lution and Learning (SEAL 04), 2004.

[28] U.M. O’Reilly, Using a Distance Metric on Genetic Programs to
Understand Genetic Operators,Late Breaking Papers at the 1997
Genetic Programming Conference, 199-206, 1997.

[29] C.C. Palmer and A. Kershenbaum, Representing Trees in Genetic
Algorithms,Proceedings of the First IEEE Conference on Evolutionary
Computation, 379-384, 1994.

[30] I. Rechenberg,Evolutionstrategie: Optimierung Technisher Systeme
nach Prinzipien des Biologischen Evolution, Fromman-Hozlboog Ver-
lag, Stuttgart, 1973.

[31] J.P. Rosca and D.H. Ballard, Causality in Genetic Programming,
Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA95), Morgan Kaufmann, 1995.

[32] F. Rothlauf,Representations for Genetic and Evolutionary Algorithms,
Physica-Verlag, 2002.

[33] W. Rudin, Principles of Mathematical Analysis, Third Edition,
McGraw-Hill, 1976.

[34] Y. Schabes,Mathematical and Computational Aspects of Lexicalized
Grammars, PhD Thesis, Department of Computer and Information
Science, University of Pennsylvania, 1990.

[35] Y. Schabes, Lexicalized Context-Free Grammars, Technical Report
TR93-01, Mitsubishi Electric Research Laboratories, Cambridge Cen-
ter, 1993.

[36] Y. Schabes and R.C. Waters, Lexicalized Context-Free Grammar:
A Cubic-Time Parsable, Lexicalized Normal Form for Context-Free
Grammar That Preserves Tree Structure, Technical Report TR93-04,
Mitsubishi Electric Research Laboratories, Cambridge Center, 1993.

[37] Y. Schabes and S. Shieber, An Alternative Conception ofTree-
Adjoining Derivation,Computational Linguistics, 20 (1), 91-124, 1994.

[38] Y. Schabes and R.C. Waters, Tree Insertion Grammar: A Cubic-Time
Parsable Formalism that Lexicalizes Context-Free Grammarwithout
Changing the Trees Produced,Computational Linguistics, 20 (1), 479-
513, 1995.

[39] R. Sedgewick and P. Flajolet,An Introduction to the Analysis of
Algorithms, Addison-Wesley, 1996.

[40] B. Sendhoff et al, A Condition for the Genotype-Phenotype Mapping:
Causality,Proceedings of the 7th International Conference on Genetic
Algorithms (ICGA 97), Morgan Kaufmann, 73-80, 1997.

[41] M. Shackleton et al, An Investigation of Redundant Genotype-
Phenotype Mappings and Their Role in Evolutionary Search,Proceed-
ings of the Congress on Evolutionary Computation CEC 2000, IEEE
Press, 493-500, 2000.

[42] V. Shanker, A Study of Tree Adjoining Grammars, PhD. Thesis,
Department of Computer and Information Science, University of Penn-
sylvania, 1987.

[43] R. Shipman, Genetic Redundancy: Desirable or Problematic for Evolu-
tionary Search ?,Proceedings of the 4th International Conference on
Artificial Neural Networks and Genetic Algorithms, Springer-Verlag,
1-11, 1999.

[44] R. Shipman, M. Shackleton, I. Harvey, The Use of NeutralGenotype-
Phenotype Mappings for Improved Evolutionary Search,BT Technol-
ogy Journal, 18 (4), 103-111, 2000.

[45] T. Soule and J.A. Foster, Effects of Code Growth and Parsimony
Pressure on Population in Genetic Programming,Evolutionary Com-
putation, 6(4), 293-309, 1999.

[46] P. Stagge and C. Igel, Structure Optimization and Isomorphisms,
Theoretical Aspects of Evolutionary Computing, Springer-Verlag, 2000.

[47] D.J. Weir, Characterizing Mildly Context-Sensitive Grammar For-
malisms, PhD. Thesis, Department of Computer and Information Sci-
ence, University of Pennsylvania, 1988.

[48] P.A. Whigham,Grammatical Bias for Evolutionary Learning, PhD
thesis, University of New South Wales, 1996.

Nguyen, Xuan Hoai received his BSc degree in
Computer Science from Hanoi University, Vietnam
in 1995 and his MSc degree in Mathematics for
Computer and Computing Systems from Vietnam
National University (VNU) in 1997. He joined the
Department of Information Technology at the Viet-
Nam Military Technical Academy in 1997 as a
lecturer. He has recently completed his PhD degree
in Computer Science at the Australian Defence Force
Academy (ADFA), University of New South Wales,
and returned to the VietNam Military Technical

Academy. He is a member of the Complexity, Interaction, and Adaptation
(CIA) Group at ADFA, and a student member of the IEEE. His research inter-
ests include Genetic Programming, Grammar Guided Evolutionary Learning,
Evolutionary Computation, and Fractal Theory.

Bob McKay received his BSc in Pure Mathematics
from the Australian National University in 1971,
and his PhD in the theory of computation from the
University of Bristol, UK, in 1976.

He was a Research Scientist in computer type-
setting at the (Australian) Commonwealth Scientific
and Industrial Research Organisation from 1976 to
1985, when he joined the University of New South
Wales at the Australian Defence Force Academy
as a Lecturer and subsequently Senior Lecturer. He
moved to Seoul National University, Korea, as an

Associate Professor in 2005. His research interests lie in artificial intelligence,
evolutionary computation and ecological modelling.

He is an Associate Editor of the IEEE Transactions on Evolutionary Com-
putation, an editorial board member of Genetic Programmingand Evolvable
Machines, and an advisory board member of the InternationalJournal of
Knowledge-Based and Intelligent Engineering Systems

Daryl Essam received his PhD in fractal image pro-
cessing from the University of New South Wales at
the Australian Defence Force Academy in ?2000?.

His research focuses on new algorithms for ge-
netic programming. In particular the sub-fields of
grammars, diversity, probabilistic approaches and
multi-objective optimisation. He is currently em-
ployed as a lecturer at the Australian Defense Force
Academy, a campus of the University of New South
Wales, Australia.

