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Abstract—In this paper, we investigate the impact of a lay-
ered learning approach with incremental sampling on Genetic
Programming (GP). The new system, called GPLL, is tested
and compared with standard GP on twelve symbolic regression
problems. While GPLL does not differ from standard GP on
univariate target functions, it has better training efficiency on
problems with bivariate targets. This indicates the potential
usefulness of layered learning with incremental sampling in
improving the efficiency of GP evolutionary learning.

I. I NTRODUCTION

Genetic Programming (GP), since its introduction and de-
velopment by Koza, has been seen as a potential machine
learning method [13]. Its main objective is to discover, by
evolutionary means, relations between input and output data
in the form of a function or program. GP has been applied
successfully to numerous real world problems, of which many
are learning tasks [20]. Despite the initial successes, GP
researchers and practitioners, in the early days, seldom paid
attention to the generalization capability of GP. They focused
more on how to use GP to fit the given data set by trying to
learn the exact solution/relation (which is often impossible in
real world situations).

In the field of machine learning (ML) [21], however,
generalization has been seen as one of the most desirable
properties of any learning method. To generalize effectively,
any learning machine should avoid overfitting the training
data. Recently, GP generalization has attracted more attention
from GP researchers, with the number of related publications
increasing [7], [3], [8], [15], [9], [4], [7], [14], [12]. In
addition, there have been a number of publications on applying
traditional ML techniques and practices to the learning pro-
cesses of GP, in order to improve its generalization capability.
Successful examples of this work have been presented in [2],
[3], [8].
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Layered learning (LL) is a machine learning technique that
tries to decompose the learning task into subtasks, and then
learn each subtask in layered (staged) fashion [19], [18].
Although LL has been applied to GP [17], [6], it has generally
been used with a different purpose. Most of the related works
so far have tried to combine LL with GP in learning by
overfitting the training set part by part (for each subtask
of the learning problem) in order to find exact solutions to
problems in multi-robotic agent controls [17] and learning
Boolean functions [6]. Zhang and Joung’s [2] in particular
studied combining LL with incremental sampling to improve
the learning efficiency of GP systems. Despite the strong
theoretical foundation for this combination [16] (at leastfor
PAC learners), there does not appear to have been any previous
follow-up. In particular, to the best of our knowledge, the work
reported here is the first investigation of the impact of layered
learning on GP’s generalization capacity or learning/traing
efficiency.

In this paper, we present our first investigation on the
combination of layered learning and incremental sampling for
training GP. The rest of the paper is organized as follows.
In the next section, related work on GP generalization issues,
layered learning, and the theoretical motivation for coupling
incremental sampling with layered learning is presented. Sec-
tion III outlines our new method for training GP. The exper-
imental settings are given in sections IV. Section V presents
the experimental results with discussion. The paper concludes
with section VI, where some future work is highlighted.

II. RELATED WORKS

This section gives a brief overview of the literature on the
generalization capability of GP, and on the use of incremental
training-set size for GP, providing the motivation for the work
in this paper.
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A. Genetic Programming Generalization

Although achieving high generalization capability is the
main objective any learning machine [21], it was not seriously
considered in the field of GP for a long time. Before Kushchu
published his seminal paper on the generalization ability of
GP [22], there was limited work in the literature dealing with
GP generalization. In [23], Francone et al. proposed a new GP
system called Compiling GP (CGP), the authors comparing
its generalization ability with that of other machine learning
techniques. They showed that the generalization ability ofCGP
is comparable with a number of more traditional machine
learning approaches. The impact of the extensive use of
the mutation operator on CGP’s ability to generalize was
investigated; the results showed positive effects.

Zhang and Mühlenbein [24] proposed a method to avoid
overfitting in GP based on the Minimum Description Length
principle, with an adaptive mechanism for balancing between
accuracy and complexity according to individual preference.
The method was shown to be robust for a wide class of
tasks with noisy or incomplete data. In [8], Iba incorporated
Bagging and Boosting into GP (BagGP and BoostGP). The
results showed that these techniques could help to improve
the robustness (generalization ability) of GP on the problems
of discovering trigonometric identities, chaotic time series
prediction, and 6 bit multiplexer [8]. These early works were
good examples of the application of more traditional machine
learning techniques to the learning process of GP.

Recently, the generalization aspect of GP has deservedly
gained more attention from researchers and practitioners in the
field. In [25], Panait and Luke investigated the impact of six
common sampling methods on the robustness of GP solutions.
None of the methods dominated the others on all problems,
suggesting that the impact of sampling method is dependent
on problem domain features.

Paris et al. [7] used GP as the core learning algorithm in a
boosting framework to trigger over-fitting; GP with boosting
turned out to be substantially better than standard GP on both
the problems studied. Mahler et al. [15] tried Tarpeian control
on symbolic regression problems and tested the side effectsof
this method on the generalization accuracy of GP. The results
were mixed: Tarpeian control can either increase or reduce
the generalization power of GP solutions depending on the
problem.

In [3], Gagné et al. investigated two methods to improve
generalization in GP-based learning: selection of the best-of-
run individuals through three separate data sets (training, val-
idation, and test); and the application of parsimony pressures
to reduce the complexity of learned solutions. The results
indicated the value of a validation set, showing increased
stability of the best-of-run solutions on the test sets.

Costa and Landry [9] proposed a new GP system called re-
laxed Genetic Programming (RGP) with generalization ability
better than traditional GP.

More recently, Costelloe and Ryan [4] also investigated
the role of generalization in GP learning. They showed that
popular GP techniques such as Linear Scaling [12] may only
improve the fit on training data, not on testing/unseen data.
They proposed a method to improve GP generalization by

combining Linear Scaling with the No Same Mate strat-
egy [14].

Vanneschi and Gustafson [10] improved GP generalization
through a crossover-based similarity measure. They keep a list
of over-fitted individuals, and try to prevent similar individuals
entering the next generation (based on structural distanceor
a similarity measure based oh subtree crossover). The method
was tested on a real-life drug discovery regression problemand
showed improved generalization ability. In [11], Vanneschi et
al. proposed a method to quantify/detect over-fitting during the
GP learning process.

Nguyen Q U et al. [26] showed that semantic information
could be used to guide the crossover operator of GP in
reducing the code bloat, improving its generalization capability
on real-valued symbolic regression problems.

B. Layered learning

The layered learning paradigm was first formally introduced
by Stone and Veloso [18] as an extension and formalization of
earlier work by Asada et al. [1] and de Garis [5]. The main idea
of LL is to solve the learning problem in a hierarchical and
bottom-up fashion. The problem is decomposed into subtasks,
often as a lower order form of the original learning problem.
The learning process is then conducted in stages (layers). At
each stage, the learning machine learns to solve a subtask, once
the solution for the subtask has been obtained the learning
machine starts learning in the next stage (layer) to solve the
task in the next level, and has access to the solutions learnt
in the previous stages (layers). The principles of LL can be
summarized as follows [18], [19]:

1) Direct learning of a task might be intractable.
2) Bottom-up and hierarchical task decomposition could be

possible.
3) A learning machine could exploit data to train and/or

adapt its learning process separately at each level.
4) The output of learning process in one layer feeds into

the next layer.

Early work on LL mainly focused on the learning tasks
in multi agent systems. In [19], Stone applied LL to the
problem of learning skills for soccer agents in a multi-agent
environment. He tried three layers of learning for each agent,
with different learning skills (from individual skills such as
intercepting the ball to team skills as ball passing) to be
acquired. Different learning machines (methods) were usedto
accomplish the learning task at each layer [19].

Gustafson and Hsu [17] proposed an LL approach to learn
strategies for the keep-away soccer game, in which a team of
four players must prevent a single opposition player coming
into contact with the ball. They designed two layers for the
learning problem. The learning objective in the first layer is to
maximize the number of accurate passes, while in the second
layer it is to minimize the number of ball turnovers to the
opposition player. Both layers used GP, and each layer lasted
a fixed number of generations. The population at the final
generation of the first layer was the initial population for the
next layer, and the fitness function switched to the next task
at the same time.
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In [6], Jackson and Gibbons applied two approaches of
LL to GP learning on more GP traditional problem domains,
learning Boolean functions. In the first, they used two layers
of learning, with the first layer learning a subset of fitness
cases of the 4-parity problem, and the second learning the
whole set of fitness cases. The experiments with this approach
gave disappointing results, in over-fitting to the exact solution
for the problem. They then modified the approach so that
the first layer was used for learning a simplified version of
the original problem (with fewer input variables) while the
second exploited what had been learnt in the first to discover
exact solutions for the original problem. The results showed
the positive effects of using LL compared to standard GP and
GP with ADF.

C. Incremental Sampling

In [16], Muggleton theoretically analyzed the combination
of layered learning with incremental sampling, deriving gen-
eral lower-bound results for Probably Approximately Correct
(PAC) learning. The learning process begins by taking a small
sample from a stream of available training data, and uses it
to construct an approximately correct theory (using any PAC
learning machine). A second approximately correct theory is
then constructed based on the error of the first theory, usinga
new sample set which is a superset of the first. Further layers
of correcting theories are then added using successively larger
samples, until a predefined level of accuracy of the overall
theory is achieved. Muggleton showed that if the sample size
increases linearly (with respect to the VC dimension of the
hypothesis space), the lower bound for generalization error
will exponentially decrease over the learning layers. Muggle-
ton suggested that the use of LL and incremental sampling
might not be subject to results on hardness of learning that
apply to PAC learning by machines with a single layer of
learning.

In [27], Zhang proposed a Bayesian framework for GP
learning. From Bayesian theory, he suggested that the training
set for GP learning should increase during the learning/training
phase. In [2], [27], GP with incremental data inheritance
(IDI) was proposed, and applied to the task of evolving
cooperation strategies for robotic agents. IDI distinguishes
two populations: program population and data population.
Both the program and its data concurrently evolve toward an
optimal combination. The size of the training set used in the
experiments was increased by a seemingly arbitrary increment
of 6 at each generation. In the results, IDI’s generalization
error was non-significantly improved over standard GP, but
the training time was significantly shorter.

III. PROPOSEDMETHOD

Our proposed training method for GP is motivated by the
theoretical study of layered learning in [16]. It resembles
Jackson and Gibbons’ first approach [6] and aspects of Zhang
and Joung [2], [27] but differs from them in a number of ways.
While [6] focuses on training set accuracy, we emphasize GP
generalization. The learning process in [2], [27] is a special
case of LL, in which the length of each layer is one generation,

and the increase in sample size is somewhat arbitrary (6). Our
approach is more faithful to LL, with the increase in training
sample size motivated by theory from [16]. The problems
tested in [6] and [2], [27] are frp, Boolean and Multi-agent
domains, while we concentrate on more traditional real-valued
symbolic regression from the GP literature. Finally, whilethe
previous approaches to GP with LL use a fixed number of
generations as the length of each layer, we employ a different
stopping criterion, which will be described next.

The learning/evolutionary process of our Layered learning
GP (GPLL) system is divided intom layers. It starts as in
standard GP, except that only a subset of the training examples
are presented to the system. When the stopping criterion
is satisfied in each layer, the next layer commences. The
population in the last generation of the previous layer becomes
the initial population of the next layer, and the training sample
set is incremented with newly added samples (drawn under
the same distribution from the problem training samples). At
the ith layer, the size of the training set (fitness cases) is
|Di| = k|Di−1|, wherek a predefined constant (that is, the
training cases increase exponentially). The process is repeated
until the required number of layers (3 in this paper) have
been completed or some stopping criteria are met. Figure 1
summarizes the GPLL learning process.

Fig. 1. Incremental Sampling Layered Learning Framework based on a
Hierarchical, Bottom-up Approach

At each layer, when the new population is created from
the old population by the applications of selection, crossover,
and mutation operators (generational transition), a stopping
criterion is tested. It checks whether there is overfitting in the
new population. If overfitting has been detected forn succes-
sive generations (i.e. the learning is no longer productive), the
learning layer is ended. Figure 2 depicts this process.

Overfitting is estimated as proposed in Vanneschi et al.[11].
The detail of the method is presented in algorithm 1. In the
algorithm, bvp is ”best valid point” and denotes the best
validation fitness (error on the validation set) found up to
the current generation, excluding those generations (usually
at the beginning of a run) where the best individual on the
training set has higher accuracy on the validation set than the
training set.tbtp stands for ”training at best valid point” –
i.e. the training fitness of the individual that has validation
fitness equal tobtp. Training Fit(g) is a function that returns
the best training fitness in the population at generation g.
Val Fit(g) returns the validation fitness of the best individual
on the training set at generation g. In this paper, we have made
a further simplification, in that we ignore the absolute value
of over fit(g), just noting whether it is positiv. The stopping
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Fig. 2. GP Evolution of each layer

criterion for an layer in GPLL is satisfied if it has been detected
as overfitting inn successive generations, wheren is a tunable
parameter.

Algorithm 1: Calculation of the Degree of Over-fitting at
each Generation.
over fit(0)=0;
bvp = Val Fit(0);
tbtp = Training Fit(0);
foreach generationg > 0 do

if Training Fit(g) > Val Fit(g) then
over fit(g) = 0;

else if Val Fit(g)< bvp then
over fit(g) = 0;
bvp = Val Fit(g);
tbtp = Training Fit(g);

else
over fit(g)
=|Training F it(g)−V al F it(g)|− |tbtp− bvp|;

IV. EXPERIMENTAL SETTINGS

To test the impact of layered learning and incremental
sampling on the learning efficiency of GP, we tested GPLL
and a standard GP system (GPM) on twelve symbolic re-
gression problems. These problems have been widely used as
benchmarks for testing the generalization performance of GP
systems. Among these twelve, the target learning functions
in six problems are univariate functions (f : R → R ),
with the remaining six being bivariate (f : R2 → R).
Their mathematical formulae are given in equations 1 to 12.
The parameter settings are given in Table I. We emphasize
that GPLL uses the same algorithm and settings (even, the
same initial random seed) as GPM, except that in the former,
the training set (fitness cases) increases at each of the three
learning layers. Table II shows how the training, validation,
and test data sets were formed in our experiments.

All runs were conducted on a Compaq Presario CQ3414L
computer with Intel Core i3-550 Processor (4M Cache,
3.20GHz) running on Ubuntu Linux operating system.

F1(x) = x4 + x3 + x2 + x (1)

F2(x) = x3 − x2 − x− 1 (2)

F3(x) = arcsinx (3)

F4(x) =
√
x (4)

F5(x) = sin(2πx) (5)

F6(x) = cos(3x) (6)

F7(x, y) = xy (7)

F8(x, y) = xy + sin ((x − 1)(y − 1)) (8)

F9(x, y) = x4 − x3 +
y2

2
− y (9)

F10(x, y) = 6 sin(x) cos(y) (10)

F11(x, y) =
8

(2 + x2 + y2)
(11)

F12(x, y) =
x3

5
+

y3

2
− y − x (12)

TABLE I
PARAMETER SETTINGS FOR THEGENETIC PROGRAMMING SYSTEM

Population Size 500
Maximum generation 150
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Non-terminals +, -, *, / (protected version)

, sin, cos, exp, log
(protected version)

Number of runs 100
Standardized fitness mean absolute error
Elitism

V. RESULTS AND DISCUSSIONS

For each run of GPLL and GPM, we recorded the general-
ization (test set) error (GE) of the best individual of the run,
the size of that best individual, the total run time, and the
first generation where the best individual was discovered. We
conducted three sets of GPLL experiments, withn (the number
of generations required before detection of over-fitting) set to
3, 6 and 9. Tables 3 and 4 present these results forn ∈ 3, 9,
averaged over 100 runs, and with standard deviations). We
omittedn = 6 results as being intermediate in nature between
the other two sets.

To test the significance of the difference in generalization
error between GPLL and GPM, we used a two-tailed pairwise
t-test with confidence level of 0.95 (α = 0.05); the p-values
are shown.1 Our null and alternative hypotheses are as follows:

• H0 = ”the average test-set error of GPLL and GPM are
the same”.

• H1 = ”GPLL and GPM have different test-set errors”.

1p-values shown as 0.0000 are actually numbers less than 0.00005.
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TABLE II
DATA SETS FOR THE TEST FUNCTIONS.

RANGES ARE DENOTED USING[START:STEP:STOP] NOTATION WHEN THE SET IS CREATED USING REGULAR INTERVALS.
THE NOTATION [MIN , MAX ] DEFINES RANDOM(UNIFORM) SAMPLING IN THE RANGE.

THE MESH([]× []) DEFINES REGULAR SAMPLING IN TWO DIMENSIONS.

Num Function Training set (3 layers) Validation set Test set
1 F1 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-1:0.01:1]
2 F2 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-1:0.01:1]
1 F3 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-1:0.01:1]
4 F4 [40,80,160] points of [0,4] 80 points of[0, 4] 200 points of [0:0.02:4]
5 F5 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [-0.5:0.01:1.5]
6 F6 [40,80,160] points of [-1,1] 80 points of [-1,1] 200 points of [0:0.01:2]
7 F7 [100,200,400] points of [0,1]x[0,1] 150 points of[0, 1]× [0, 1] 10000 points of[0 : 0.01 : 1]× [0 : 0.01 : 1]
8 F8 [100,200,400] points of [-3,3]x[-3,3] 150 points of[−3, 3]× [−3, 3] 3600 points of[−3 : 0.1 : 3]× [−3 : 0.1 : 3]
9 F9 [100,200,400] points of [-3,3]x[-3,3] 150 points of[−3, 3]× [−3, 3] 3600 points of[−3 : 0.1 : 3]× [−3 : 0.1 : 3]
10 F10 [100,200,400] points of [-3,3]x[-3,3] 150 points of[−3, 3]× [−3, 3] 3600 points of[−3 : 0.1 : 3]× [−3 : 0.1 : 3]
11 F11 [100,200,400] points of [-3,3]x[-3,3] 150 points of[−3, 3]× [−3, 3] 3600 points of[−3 : 0.1 : 3]× [−3 : 0.1 : 3]
12 F12 [100,200,400] points of [-3,3]x[-3,3] 150 points of[−3, 3]× [−3, 3] 3600 points of[−3 : 0.1 : 3]× [−3 : 0.1 : 3]

Fig. 3. Results for n = 3
p-value testing error size of best running time first generation.

of
t-test

GPLL GPM GPLL GPM GPLL GPM GPLL GPM

F1 0.0001 0.0193 0.0105 83.5300 128.8900 58.6800 73.7200 68.3200 132.4300

±0.0157 ±0.0148 ±45.7352 ±59.6300 ±66.6306 ±26.4915 ±44.9280 ±31.1452

F2 0.0000 0.0544 0.0152 82.0400 149.3000 44.3000 88.8700 43.7700 141.0600

±0.0364 ±0.0124 ±43.1572 ±54.9895 ±55.0319 ±22.1691 ±27.6094 ±12.1421

F3 0.7516 0.0163 0.0066 73.3800 110.5300 34.8100 49.4400 47.9400 132.8300

±0.0155 ±0.0110 ±38.2054 ±64.0733 ±49.1289 ±23.3841 ±31.8535 ±30.2141

F4 0.0000 0.0163 0.0073 73.3800 118.8700 34.8100 74.9100 47.9400 131.3600

±0.0155 ±0.0054 ±38.2054 ±51.2070 ±49.1289 ±58.6421 ±31.8535 ±28.6302

F5 0.0047 0.2062 0.1309 90.4600 138.8200 57.2200 84.6300 63.2600 137.6400

±0.2141 ±0.1527 ±56.2888 ±53.6998 ±68.2256 ±26.2373 ±47.2638 ±18.2942

F6 0.0092 0.2055 0.1390 101.1100 128.5700 71.8700 77.7500 86.2700 127.4100

±0.1897 ±0.1655 ±51.2398 ±59.0400 ±55.4077 ±20.8076 ±45.3576 ±37.8978

F7 0.0000 0.0295 0.0196 79.7900 117.1300 35.2300 159.9300 67.1100 134.0900

±0.0143 ±0.0105 ±44.3274 ±51.7673 ±38.3566 ±57.3712 ±41.0476 ±30.8296

F8 0.0065 0.5680 0.5182 24.5300 83.4300 6.6600 90.1000 37.0600 110.8600

±0.1350 ±0.1203 ±27.4449 ±72.1029 ±11.1021 ±83.1028 ±37.3198 ±59.4218

F9 0.0000 2.1922 1.1590 85.7200 152.2300 29.4000 207.9200 51.0600 144.8300

±0.8661 ±0.5723 ±41.4407 ±53.5076 ±23.4676 ±62.2555 ±20.6172 ±7.6410

F10 0.0059 0.6395 0.4083 90.6600 127.2100 42.3500 170.9100 79.8200 133.0900

±0.6080 ±0.5632 ±48.0581 ±54.5544 ±36.4177 ±52.5563 ±39.5258 ±26.8374

F11 0.0000 0.2865 0.1536 53.2200 128.7900 17.2200 174.2000 33.2500 143.6400

±0.1598 ±0.1207 ±31.1833 ±43.5557 ±16.4897 ±50.2991 ±22.0538 ±7.7973

F12 0.0000 0.7524 0.5975 74.8900 126.8800 28.4300 148.9200 62.3900 145.7900

±0.1928 ±0.1400 ±40.7126 ±37.6476 ±35.3074 ±41.6099 ±39.8406 ±5.3073

Fig. 4. Results for n = 9
p-value testing error size of best running time first generation

of
t-test

GPLL GPM GPLL GPM GPLL GPM GPLL GPM

F1 0.2526 0.0135
±0.0222

0.0105
±0.0148

108.8300
±52.9978

128.8900
±59.6300

92.2300
±64.7408

73.7200
±26.4915

97.9600
±41.3778

132.4300
±31.1452

F2 0.0000 0.0264
±0.0204

0.0152
±0.0124

130.1700
±39.9538

149.3000
±54.9895

106.6200
±57.3514

88.8700
±22.1691

93.8400
±33.0628

141.0600
±12.1421

F3 0.0105 0.0035
±0.0042

0.0066
±0.0110

100.4600
±51.0513

110.5300
±64.0733

59.2800
±40.7818

49.4400
±23.3841

119.1500
±27.5939

132.8300
±30.2141

F4 0.0035 0.0120
±0.0150

0.0073
±0.0054

101.5500
±48.1686

118.8700
±51.2070

74.0100
±22.7119

74.9100
±58.6421

80.6300
±35.1547

131.3600
±28.6302

F5 0.0812 0.1735
±0.1891

0.1309
±0.1527

128.8100
±55.7530

138.8200
±53.6998

95.9600
±56.4484

84.6300
±26.2373

102.0300
±37.1789

137.6400
±18.2942

F6 0.3000 0.1657
±0.1948

0.1390
±0.1655

108.6800
±51.6047

128.5700
±59.0400

92.1700
±51.2228

77.7500
±20.8076

110.2700
±38.6794

127.4100
±37.8978

F7 0.2928 0.0211
±0.0091

0.0196
±0.0105

115.3900
±44.8105

117.1300
±51.7673

65.0600
±29.0895

159.9300
±57.3712

120.9600
±31.5027

134.0900
±30.8296

F8 0.5091 0.5301
±0.1345

0.5182
±0.1203

55.2400
±58.3468

83.4300
±72.1029

34.3000
±44.8728

90.1000
±83.1028

69.2300
±48.3073

110.8600
±59.4218

F9 0.0124 1.4077
±0.5621

1.1590
±0.5723

142.7900
±55.3865

152.2300
±53.5076

92.7400
±40.3319

207.9200
±62.2555

121.4900
±27.5199

144.8300
±7.6410

F10 0.6389 0.4454
±0.5431

0.4083
±0.5632

121.8600
±58.1744

127.2100
±54.5544

68.8500
±35.8919

170.9100
±52.5563

127.2500
±28.6220

133.0900
±26.8374

F11 0.0724 0.1887
±0.1480

0.1536
±0.1207

104.2100
±44.0409

128.7900
±43.5557

75.2300
±30.7406

174.2000
±50.2991

99.5800
±37.6915

143.6400
±7.7973

F12 0.0907 0.6356
±0.1725

0.5975
±0.1400

109.5600
±38.9556

126.8800
±37.6476

59.2200
±29.4030

148.9200
±41.6099

113.1200
±33.8882

145.7900
±5.3073
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In tables 3 and 4, ifH0 is accepted the p-value is printed
in normal face, otherwise it is printed in bold face if GPM
performs better than GPLL, or in italic face if the reverse is
true.

It can be seen from the tables that stopping too eagerly
in each layer severely degrades the generalization capacity of
GP. Whenn = 3, on almost all functions, GPLL generalises
worse than GPM. The results in the last two columns of Table
3 (showing the first generations, averaged over 100 runs, where
the best solutions were found) explain this degradation. Setting
n = 3 causes GPLL to stop prematurely, while GPM continues
on and generally finds the best solutions close to the end of
each run. Consequently, the average training time and solution
complexity (measured in number of nodes) obtained by GPLL
were significantly smaller than those of GPM.

When n was increased to 9 (table 4, the generalization
performance of GPLL improved, achieving statistically indis-
tinguishable generalization performance from GPM on 8 out
of 12 functions.

For the univariate functions, the results are mixed, with
GPLL giving better generalization on one function, GPM on
two, and the other three being statistically indistinguishable
(though GPLL generalizes slightly worse). GPLL finds rather
less complex solutions, but takes longer to do so.

On the bivariate functions the results are more consistent.
On almost all problems (except F9), the test set errors of GPLL
and GPM are similar (H0 is accepted). However, the training
times for GPLL were substantially smaller than for GPM. The
solutions found by GPLL were also somewhat smaller.

VI. CONCLUSION

In this paper, we have investigated the impact of layered
learning with incremental sampling on GP learning efficiency.
The experimental results on twelve benchmark symbolic re-
gression problems indicate that while the impact is small
for univariate functions it is more useful in the case of bi-
variate functions: layered learning with incremental sampling
improves the training efficiency of GP by reducing the training
(learning) time, while maintaing the quality of the solutions
and reducing their complexity.

The stopping criterion for learning in each layer used in this
paper is a rather simplified version of that presented in [11].
In future, we plan to test more sophisticated stopping criteria
based on the full version of the algorithm. Testing GPLL on
more complicated real-world problems is also an objective of
our near-future work.
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