
Solving the Symbolic Regression Problem with Tree-Adjunct Grammar Guided
Genetic Programming: The Comparative Results

 N.X.Hoai1, R.I. McKay2, and D. Essam2
School of Computer Science,

University of New South Wales,
ADFA campus, Canberra,

ACT 2600, Australia,
1 x.nguyen@student.adfa.edu.au

2 rim, daryl@cs.adfa.edu.au

Abstract - In this paper, we show some experimental
results of tree-adjunct grammar guided genetic
programming [6] (TAG3P) on the symbolic regression
problem, a benchmark problem in genetic programming. We
compare the results with genetic programming [9] (GP) and
grammar guided genetic programming [14] (GGGP). The
results show that TAG3P significantly outperforms GP and
GGGP on the target functions attempted in terms of
probability of success. Moreover, TAG3P still performed well
when the structural complexity of the target function was
scaled up.

I. INTRODUCTION

Tree adjunct grammar guided genetic programming [6]
(TAG3P) is a grammar guided genetic programming
system that uses tree adjunct grammars along with context
free grammars as means to set bias for the evolutionary
process. The preliminary results in [4], [5] indicated that
TAG3P works well on the symbolic regression problem. In
this paper we experiment with GP, GGGP and TAG3P on
the symbolic regression problem with different target
functions to compare their performances and to observe
how well they solve the problem when the structural
complexity of the target function is scaled up. The
organization of the remainder of the paper is as follow. In
section 2, we give some basic concepts of GP, GGGP, and
TAG3P. Section 3 describes the symbolic regression
problem. Section 4 contains our experimental setup. The
results will be given and discussed in section 5. Section 6
concludes the paper and discusses some future work.

II. BACKGROUNDS

In this section, we briefly overview some basic
components and operations of the three different genetic
programming systems, namely, canonical genetic
programming [9] (GP), grammar guided genetic
programming [14] (GGGP) and tree adjunct grammar
guided genetic programming [6] (TAG3P).

II .1 Genetic Programming

Genetic programming (GP) can be classified as an
evolutionary algorithm, in which computer programs are
the evolutionary targets. An early definition, model,
techniques and problems of genetic programming can be

found in [9]. For a good survey of genetic programming, [1] is
recommended. A basic genetic programming system consists of
five basic components [9]: representation for programs (called
genome structure), a procedure to initiali ze a population of
programs, a fitness to evaluate the performance of the program,
genetic operators, and parameters. In [9], the structure of
programs is the structured tree of S-expressions; fitness of a
program is evaluated by its performance; main genetic operators
are reproduction, crossover, and mutation. Reproduction means
some programs are copied to the next generation based on their
fitness, crossover can be carried out between two tree-based
programs by swapping two of their sub-trees,1 and a tree-based
program can be mutated by replacing one of its sub-trees by a
randomly generated tree. Parameters are population size,
maximum number of generations and probabil ities for genetic
operators. The evolutionary process is as follows. At the
beginning, a population of tree-based programs is randomly
generated. Then, the new population is created by applying
genetic operators to the individuals chosen from the existing
population based on their fitness. This process is repeated until
the desired criteria are satisfied or the number of generations
exceeds the maximum number of generation. GP has been used
successfully in generating computer programs for solving a
number of problems in a wide range of areas [1].

II.2 Grammar Guided Genetic Programming

Grammar guided genetic programming systems are genetic
programming systems that use grammars to set syntactical
constraints on programs. The use of grammars also helps these
genetic programming systems to overcome the closure
requirement in canonical genetic programming, which cannot
always be fulfilled [14].

 Using grammars to set syntactical constraints was first
introduced by Whigham [14] where context-free grammars were
used. We shall refer Whigham’s system as GGGP for the rest of
the paper. Basically, GGGP has the same components and
operations as in GP; however, there are a number of significant
differences between the two systems. In GGGP, a program is
represented as its derivation tree in the context free grammar.
Crossover between two programs can only be carried out by
swapping their two sub-derivation trees that start with the inner
nodes labelled by the same non-terminal symbol in the

1 The ideas of using tree-based representation of chromosomes and swapping
sub-trees as crossover operator was first introduced in [2].

rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1004435&tag=1

grammar. In mutation, a sub-derivation tree is replaced by
a randomly generated sub-derivation tree that is derived
from the same non-terminal symbol. GGGP demonstrated
positive results on the 6-multiplexer problem and
subsequently on a wide range of other problems.

II. 3 Tree Adjunct Grammar Guided Genetic Programming

Tree adjunct grammar guided genetic programming [6]
(TAG3P) uses tree adjunct grammars along with context
free grammars to set syntactical constraints as well as
search bias for the evolution of programs. In this
subsection we will first give the basic concepts of tree
adjunct grammars then the basic components of TAG3P.

II.3.1 Tree Adjunct Grammars

Tree-adjunct grammars are tree-rewriting systems,
defined in [7] as follows:

Definition 1: a tree-adjunct grammar comprises of 5-
tuple (T, V, I, A, S), where T is a finite set of terminal
symbols; V is a finite set of non-terminal symbols (T ∩ V
= ∅); S ∈ V is a distinguished symbol called the start
symbol. I is a set of trees called initial trees. An initial tree
is defined as follows: the root node is S; all interior nodes
are labelled by non-terminal symbols; each node on the
frontier is labelled by a terminal symbol. A is a finite set of
trees called auxiliary trees, which can be defined as
follows: internal nodes are labelled by non-terminal
symbols; a node on the frontier is labelled by a terminal or
non-terminal symbol; there is a special non-terminal node
on the frontier called the foot node. The foot node must be
labelled by the same (non-terminal) symbol as the root
node of the tree. We will follow the convention in [8] to
mark the foot node with an asterisk (*).

The trees in E= I ∪ A are called elementary trees. Initial
trees and auxiliary trees are denoted α and β respectively;
and a node labelled by a non-terminal (resp. terminal)
symbol is sometime called a non-terminal (resp. terminal)
node. An elementary tree is called X-type if its root is
labelled by the non-terminal symbol X.

The key operation used with tree-adjunct grammars is
the adjunction of trees. Adjunction can build a new
(derived) tree γ from an auxiliary tree β and a tree α
(initial, auxiliary or derived). If a tree α has a non-terminal
node labelled A, and β is an A-type tree then the
adjunction of β into α to produce γ is as follows. Firstly,
the sub-tree α1 rooted at A is temporarily disconnected
from α. Next, β is attached to α to replace this sub-tree.
Finally, α1 is attached back to the foot node of β. γ is the
final derived tree achieved from this process. Adjunction is
illustrated in Figure 1.

The tree set of a TAG can be defined as follows [7]:
 TG = {all tree t / t is completed and t is derived from

some initial trees}
A tree t is completed, if t is an initial tree or all of the

leaf nodes of t are non-terminal nodes; and a tree t is said
to be derived from a TAG G if and only if t results from an
adjunction sequence (the derivation sequence) of the form:

α β1(a1) β2(a2)... βn(an) , where n is an arbitrary integer, α , βi
(i=1,2..n) are initial and auxiliary trees of G and ai (i=1,2..n) are
node address where adjunctions take place. An adjunction
sequence may be denoted as (*). The language LG generated by
a TAG is then defined as the set of yields of all trees in TG.

 LG = {w ∈ T* / w is the yield of some tree t ∈ TG}
The set of languages generated by TAGs (called TAL) is a

superset of context-free languages; and is properly included in
indexed languages [8]. More properties of TAL can be found in
[8]. One special class of tree-adjunct grammars (TAGs) is
lexicalized tree-adjunct grammars (LTAG) where each
elementary tree of a LTAG must have at least one terminal
node. It has been proved that for any context-free grammar G,
there exists a LTAG Glex that generates the same language and
tree set with G (Glex is then said to strongly lexicalize G) [8].

 A

 A A

 A*

 A

Figure 1. Adjunction.

II.3.2 Tree Adjunct Grammar Guided Genetic Programming

In [6], we proposed a grammar guided genetic programming
system called TAG3P, which uses a pairs consisting of a
context-free grammar G and its corresponding LTAG Glex to
guide the evolutionary process. The main idea of TAG3P is to
evolve the derivation sequence in Glex (genotype) rather than
evolve the derivation tree in G as in [14]. Therefore, it creates a
genotype-to-phenotype map. As in GP [9], TAG3P comprises of
the following five main components:

Program representation: a modified version of the linear
derivation sequence (*), but the adjoining address of the tree βi
is in the tree βi-1. Thus, the genome structure in TAG3P is linear
and length-variant. Although the language and the tree set
generated by LTAGs with the modified derivation sequence is
yet to be determined, we have found pairs of G and Glex
conforming to that derivation form for a number of standard
problems in genetic programming [4], [5].

Initialization procedure: a procedure for initializing a
population is given in [6]. To initialize an individual, TAG3P
starts with selecting a length at random; next, it picks up
randomly an α tree of Glex then a random sequence of β trees
and adjoining addresses. It has been proved that this procedure
can always generate legal genomes of arbitrary and finite
lengths [6].

Fitness Evaluation: the same as in canonical genetic
programming [9].

Genetic operators: in [6], we proposed two types of
crossover operators, namely one-point and two-point crossover,

and three mutation operators, which are replacement,
insertion and deletion. The crossover operators in TAG3P
are similar to those in genetic algorithms; however, the
crossover point(s) is chosen carefully so that only legal
genomes are produced. In replacement, a gene is picked
up at random and the adjoining address of that gene is
replaced by another adjoining address (adjoining address
replacement); or, the gene itself is replaced by a
compatible gene (gene replacement) so that the resultant
genome is stil l valid. In insertion and deletion, a gene is
inserted into or deleted from the genome respectively.
With these carefully designed operators, TAG3P is
guaranteed to produce only legal genomes. Selection in
TAG3P is similar to canonical genetic programming and
other grammar-guided genetic programming systems.
Currently, reproduction is not employed by TAG3P.

Parameters: minimum length of genomes,
MIN_LENGTH, maximum length of genomes
MAX_LENGTH, size of population - POP_SIZE,
maximum number of generations – MAX_GEN and
probabili ties for genetic operators.

 Some analysis of the advantages of TAG3P can be
found in [4]-[6].

II .4 Other Grammar Guided Genetic Programming Systems

Wong and Leung [15] used logic grammars to combine
inductive logic programming and genetic programming.
They have succeeded in incorporating domain knowledge
into logic grammars to guide the evolutionary process of
logic programs.

Ryan and his co-workers [13] proposed a system called
grammatical evolution (GE), which can evolve programs
in any language, provided that this language can be
described by a context-free grammar. Their system differs
from Whigham’s system in that it does not evolve
derivation trees directly. Instead, genomes in GE are
binary strings representing eight-bit numbers; each number
is used to make the choice of the production rule for the
non-terminal symbol being processed. GE has been shown
to outperform canonical GP on a number of problems [10].

III. SYMBOLIC REGRESSION PROBLEM

 The symbolic regression problem can be stated as
finding a function in symbolic form that fits a given finite
sample of data [9]. In [9], the problem is restricted to
finding a function of one independent variable. As in [9],
the function set for GP in this paper is { +, -, * , /, sin, cos,
Log, Exp} , and the terminal set is { X} . The problem space
for GGGP and TAG3P can be described by a finitely
ambiguous context-free grammar G and the corresponding
lexicalized tree-adjunct grammar Glex as follows [4].

The context-free grammar for the symbolic regression
problem: G = (N={ EXP, PRE, OP, VAR,} ,T= { X, sin,
cos, log, ep, +, -, * , /, (,)} ,P,{ EXP} } where ep is the
exponential function, and the rule set P={ EXP→EXP OP
EXP, EXP→PRE (EXP), EXP→VAR, OP→+, OP→ - ,

OP→* , OP→/, PRE→ in, PRE→cos, PRE→log, PRE→ep,
VAR→ X} .

The tree adjunct grammar for the symbolic regression
problem: Glex= { N={ EXP, PRE, OP,VAR} ,T={ X, sin, cos, log,
ep,+, -, * , /, (,)} , I, A) where I∪ A is as in Figure 2.

α: EX P β1: E X P β2 : E X P β3: E X P β4 : EX P

 V A R E X P O P E X P* EX P O P E X P* E X P O P EX P* EX P O P EX P*

 X VA R + V A R - V A R * V A R /

 X X X X
 β5 : E X P β6: EX P β7: E X P β8 : EX P

 EX P* O P E X P E X P* O P EX P E X P* O P EX P E X P* O P E X P

 + V A R - V A R * V A R / V A R

 X X X X

 β9 : EX P β1 0: E X P β1 1: E X P β1 2: EX P

 PR E (E X P*) PRE (EX P*) PR E (E X P*) PR E (EX P*)

 si n cos ep l o g

Figure 2 Elementary trees for Glex.

A variation of the simple symbolic regression above is known
as the trigonometric identities problem [9], where the basic
trigonometric function of the target function does not appear in
the function set. We wil l follow [9] in setting the function set
for GP is { +, -, *, /, sin} , and the terminal set is {X, 1.0} . The
target function is cos(2X) as in [9]. The context free grammar G
and its corresponding LTAG Glex for GGGP and TAG3P are as
follows [5].

The context-free grammar for the problem of finding
trigonometric identities: G = (N, T, P, {EXP}). Where
N={ EXP, PRE, OP, VAR, NUM} is the set of non-terminal
symbols; T= { X, sin, +, -, * , /, (,), 1.0} , P, { EXP}) is the set of
terminal symbols; EXP is the start symbol; and the rule set
P={ EXP→EXP OP EXP, EXP→ PRE(EXP), EXP→VAR,
EXP→ NUM, OP→ +, OP→ - , OP→ * , OP→ /, PRE→ sin ,
VAR→ X, NUM→ 1.0} .

The tree-adjunct grammar for the problem of finding
trigonometric identities Glex= (N, T, I, A). Where N={EXP,
PRE, OP, VAR, NUM} is the set of non-terminal symbols; T={
X, sin, +, -, *, /, (,), 1.0} is the set of terminal symbols; and I
and A are the sets of initial and auxiliary trees respectively. The
set of the elementary trees I ∪ A is as in Figure 3.

IV. EXPERIMENTAL DESIGN

Five experiments were conducted. In the first four
experiments, we tried all three systems on the symbolic
regression problem with four different target functions namely,
F1=X2+X, F2=X3+X2+X, F3=X4+X3+X2+X, and
F4=X5+X4+X3+X2+X.

The aim of the experiments was not only to compare the
abil ities of GP, GGGP and TAG3P in inducing the target

function from the sampled data but also to observe their
efficiency when the structural complexity of the target
function was increased. It should be noted that each Fi
above (i=2,3,4) can be represented as Fi-1*X+X.

α1 : E X P α2 : E X P β9 : E X P

 V A R N U M P R E (E X P *)

 X 1 .0 s in

β1 0 : E X P β1 1 : E X P β1 2 : E X P β1 3 : E X P

 E X P O P E X P * E X P O P E X P * E X P O P E X P * E X P O P E X P *

N U M + N U M - N U M * N U M /

 1 .0 1 .0 1 .0 1 .0

β1 4 : E X P β1 5 : E X P β1 6 : E X P β1 7 : E X P

 E X P * O P E X P E X P * O P E X P E X P * O P E X P E X P * O P E X P

 + N U M - N U M * N U M / N U M

 1 .0 1 .0 1 .0 1 .0
Figure3. Elementary trees for Glex the β1-β8 are the same as the β1-β8 in

Figure 2.

In the fifth experiment, all three systems were
experimented on the trigonometric identities problem with
cos(2X) as the target function. The aim was to derive the
three alternative identities, namely, 1-2sin2(X),
cos(2X+π/2) and cos(π/2-2X). Table 1 summarises the
experimental design for the three systems.

V. RESULTS

In each experiment, 150 runs were conducted; 50 runs
for each system. During these runs GP, GGGP and TAG3P
used the same data set. The number of successful runs for
each system is summarised in table 2.

In the first experiment, the three system discovered the
exact solution almost all the time. One of the reasons for
this success is that the structural complexity of the target
function is small. Figure 4 depicts their cumulative
frequencies. GP and TAG3P found the solution at quite
early generations whereas GGGP found the solution
somewhat later.

The cumulative frequencies in the second experiment
were shown in Figure 5. The efficiency of TAG3P was
maintained when the target function was changed from F1

to F2. In contrast, the probability of success for GP and
GGGP decreased dramatically. In this experiment, GGGP
slightly outperformed GP.

Figure 6 shows the cumulative frequencies of all three
systems for target function F3 in the third experiment.

Once again, there was a big fall in the probability of
success of GP and GGGP where the target function was
made slightly more complex in structure. On the contrary,
TAG3P still handled the increase in the structural
complexity of the target function.

The cumulative frequencies for function F4 are recorded
in Figure 7. The results confirm those for F3: TAG3P

Objective Find a function of one independent
variable and one dependant variable
that fits a given sample of 20 (xi, yi)
data points, where the target functions
are F1-F4, cos(2X).

Terminal Operands X (the independent variable) in
experiments 1 to 4; {X, 1.0} in
experiment 5.

Terminal Operators The binary operators are +,-,*,/. The
unary operators are sin, cos, exp and
log in experiment 1 to 4; and it is only
sin in experiment 5.

Fitness Cases The sample of 20 points in the interval
[-1..+1] in experiments 1 to 4, and in
the interval [0..2π] in experiment 5.

Raw fitness The sum, taken over 20 fitness cases, of
the errors.

Standardized
Fitness

Same as raw fitness.

Hits The number of fitness cases for which
the error less than 0.01.

Genetic Operators Tournament selection, one-point
crossover and gene replacement for
TAG3P. Tournament selection, normal
crossovers and mutations for GP and
GGGP.

Parameters The crossover probability for GP,
GGGP, TAG3P is 0.9. The mutation
probability for GP and GGGP is 0.1.
Replacement probability for TAG3P is
0.01 for experiments 1 to 4 and 0.05 for
experiment 5. Tournament size is 3.
MAX_GEN is 30 in experiments 1 to 4
and 200 in experiment 5.
POP_SIZE=500.

Success predicate An individual scores 20 hits.

Table1. Experimental setups for GP, GGGP and TAG3P.

Target functions GP GGGP TAG3P
F1 47(94%) 46(92%) 50(100%)
F2 30(60%) 32(64%) 50(100%)
F3 21(42%) 24(48%) 48(96%)
F4 9(18%) 14(28%) 42(84%)
Cos(2x) 0(0%) 10(20%) 18(36%)

Table2. Number of successful runs for three systems in five experiments.

significantly outperformed GP and GGGP and still worked well
when the target function was once again made more complex in
terms of structural complexity.

In the last experiment, we tried all three systems on the
trigonometric identities problem. The target function was cos
(2X). This target function is harder to induce than in the last
four experiments because the function cos was excluded from
the function set in this experiment. Consequently, the number of
successful runs for GP, GGGP and TAG3P lower. Figure 8
depicts the cumulative frequencies of the three systems.

Figure 4. Cumulative frequencies of GP, GGGP and TAG3P in
experiment 1, where the target function is X2+X.

Figure 5. Cumulative frequencies of GP, GGGP and TAG3P in
experiment 2, where the target function is X3+X2+X.

Figure 6. Cumulative frequencies of GP, GGGP and TAG3P in

experiment 3, where the target function is X4+X3+X2+X.

Figure 7. Cumulative frequencies of GP, GGGP and TAG3P in experiment 4,
where the target function is X5+X4+X3+X2+X.

Figure 8. Cumulative frequencies of GP, GGGP and TAG3P in experiment 5,
where the target function is cos(2X).

GGGP and TAG3P discovered all the three alternative
representations of the cos(2X) function mentioned in the
previous section. For GGGP, 1 out of 10 successful runs
discovered the exact representation 1-2sin2(X), and the rest
found approximate representations of cos(2X+π/2) and cos(π/2-
2X). Here we consider a function F as an approximate
representation of the two above functions if it is of the form cos
(2X+A) or cos (A-2X) (where A is a constant close to π/2) it
scores all 20 hits, and its raw fitness is smaller than 0.02. Of the
18 successful runs for TAG3P, the number of exact and
approximate representations found by were 2 and 16
respectively.

One of the reasons for the good performance of TAG3P on
the above problems lies with the superior capability of TAG3P
in preserving and combining building blocks [4], [5]. Building
blocks [11], [12] are sub-trees, which are not completed.
Functionally, they can be viewed as some potential modules.

For example, the atomic building blocks for the target
functions in the first four experiments could be X+t and
X*t, where t is a parameter representing the incomplete
portion of the tree, which are exactly β1 and β3 in Figure 2
[4]. During the evolutionary process, these building blocks
are preserved and combined to make even better building
blocks. For instance, if β1, β3 and β3 are brought together in
a chromosome then the corresponding blocks in the
phenotype space will be X+X2+t after adjunction takes
place. The atomic building blocks in TAG3P for the
trigonometric identities was found in [5] as sin(2x+1+ t),
sin(2x+sin(1/sin(1) + t), sin(2x+1+1/sin(1)+ t), sin(1-2x+
t), sin(sin(1/sin(1))-2x+ t), and sin(1/sin(1)+1-2x + t),
which result from short sequences of some beta trees in
Figure 3.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have empirically shown that, with all
the target functions attempted, TAG3P outperforms GP
and GGGP significantly on the symbolic regression and its
slightly modified version, namely, trigonometric identities.
The results also show that the performance of TAG3P
compared to GP and GGGP scales better as the structural
complexity of the target function is increased.

In [3], we used TAG3P with tree adjoining address
replacement as the mutation operator to solve the symbolic
regression problem, where the target function was F3. The
result was not as good as in this paper (probability of
success was 64%). This was a result of premature
convergence. In this paper, we used a more disruptive
replacement operator, gene replacement. Consequently, we
increased the diversity of the population and got much
better results. In future, we wil l be investigating further
more disruptive operators and mechanisms for diversity
maintenance.

The current version of TAG3P uses a restricted (linear)
form of the derivation sequence, which is sufficient for
many context-free languages, but not all . We are currently
developing a TAG-based GP system with the most general
form of derivation sequence so as to make TAG3P
universal for problems with a context-free search space.

References

[1] W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone,
Genetic Programming: An Introduction, Morgan Kaufmann
Pub, 1998.

[2] N. L. Cramer, “A representation for the Adaptive Generation
of Simple Sequential Programs’ , Proceedings of an
International Conference on Genetic Algorithms and the
Applications, pp. 183 – 187, Lawrence Erlbaum Associates,
July 1985.

[3] F. Gruau, “On Using Syntactic Constraints with Genetic
Programming”, Advances in Genetic Programming, The
MIT Press, pp. 377-394, 1996.

[4] N.X. Hoai, “Solving The Symbolic Regression Problem with
Tree-Adjunct Grammar Guided Genetic Programming: The

Preliminary Results” , Proceedings of The 5th
 Autraliasia-Japan Co-

Joint Workshop on Evolutionary Computation, pp. 52-61, 2001.
[5] N.X. Hoai, “Solving Trigonometric Identities with Tree Adjunct

Grammar Guided Genetic Programming”, To appear in the
Proceedings of The First International Workshop on Hybrid
Intelli gent Systems (HIS’01), Adelaide, Australia, 11-12 Dec
2001.

[6] N.X. Hoai and R.I. McKay, “A Framework for Tree Adjunct
Grammar Guided Genetic Programming”, Proceedings of the Post-
graduate ADFA Conference on Computer Science (PACCS’01),
pp. 93-99, 2001.

[7] A.K. Joshi, L.S. Levy, and M. Takahashi, “Tree Adjunct
Grammars” , Journal of Computer and System Sciences, Vol. 10:1,
pp. 136-163, 1975.

[8] A.K. Joshi and Y. Schabes, “Tree Adjoining Grammars” ,
Handbook of Formal Languages, Springer-Verlag, pp. 69-123,
1997.

[9] J. Koza, Genetic Programming, The MIT Press, 1992.
[10] M. O’Neill and C. Ryan, “Grammatical Evolution: A Steady State

Approach”, Proceedings of the Second International Workshop on
Frontiers in Evolutionary Algorithms, pp. 419-423, 1998.

[11] R. Poli and N.F. McPhee, “Exact Schema Theory for GP and
Variable Length Gas with Homologous Crossover” , GECCO, San

Fransisco, pp. 104-111, 2001.
[12] J.P. Rosca, and D.H. Ballard, “Genetic Programming with

Adaptive Representations” , Technical Report 489, The University
of Rochester, Feb 1994.

[13] C. Ryan, J.J. Collin, M. O’Neil l, “Grammatical Evolution:
Evolving Programs for an Arbitrary Language”, Lecture Note in
Computer Science 1391, Proceedings of the First European
Workshop on Genetic Programming, Springer-Verlag, pp. 83-95,
1998.

[14] P. Whigham, “Grammatically-based Genetic Programming”,
Proceedings of the Workshop on Genetic Programming: From
Theory to Real-World Applications, Morgan Kaufmann Pub pp.
33-41, 1995.

[15] M.L. Wong and K.S. Leung, “Evolving Recursive Functions for
Even-Parity Problem Using Genetic Programming”, Advances in
Genetic Programming, The MIT Press, pp. 221-240, 1996.

