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Abstract - In this paper, we show some experimental 
results of tree-adjunct grammar guided genetic 
programming [6] (TAG3P) on the symbolic regression 
problem, a benchmark problem in genetic programming. We 
compare the results with genetic programming [9] (GP) and 
grammar guided genetic programming [14] (GGGP). The 
results show that TAG3P significantly outperforms GP and 
GGGP on the target functions attempted in terms of 
probability of success. Moreover, TAG3P still performed well 
when the structural complexity of the target function was 
scaled up.   

I. INTRODUCTION 

Tree adjunct grammar guided genetic programming [6] 
(TAG3P) is a grammar guided genetic programming 
system that uses tree adjunct grammars along with context 
free grammars as means to set bias for the evolutionary 
process. The preliminary results in [4], [5] indicated that 
TAG3P works well on the symbolic regression problem. In 
this paper we experiment with GP, GGGP and TAG3P on 
the symbolic regression problem with different target 
functions to compare their performances and to observe 
how well they solve the problem when the structural 
complexity of the target function is scaled up. The 
organization of the remainder of the paper is as follow. In 
section 2, we give some basic concepts of GP, GGGP, and 
TAG3P. Section 3 describes the symbolic regression 
problem. Section 4 contains our experimental setup. The 
results will be given and discussed in section 5. Section 6 
concludes the paper and discusses some future work. 

II. BACKGROUNDS 

In this section, we briefly overview some basic 
components and operations of the three different genetic 
programming systems, namely, canonical genetic 
programming [9] (GP), grammar guided genetic 
programming [14] (GGGP) and tree adjunct grammar 
guided genetic programming [6] (TAG3P). 

II .1 Genetic Programming 

Genetic programming (GP) can be classified as an 
evolutionary algorithm, in which computer programs are 
the evolutionary targets. An early definition, model, 
techniques and problems of genetic programming can be 

found in [9]. For a good survey of genetic programming, [1] is 
recommended. A basic genetic programming system consists of 
five basic components [9]: representation for programs (called 
genome structure), a procedure to initiali ze a population of 
programs, a fitness to evaluate the performance of the program, 
genetic operators, and parameters. In [9], the structure of 
programs is the structured tree of S-expressions; fitness of a 
program is evaluated by its performance; main genetic operators 
are reproduction, crossover, and mutation. Reproduction means 
some programs are copied to the next generation based on their 
fitness, crossover can be carried out between two tree-based 
programs by swapping two of their sub-trees,1 and a tree-based 
program can be mutated by replacing one of its sub-trees by a 
randomly generated tree.   Parameters are population size, 
maximum number of generations and probabil ities for genetic 
operators. The evolutionary process is as follows. At the 
beginning, a population of tree-based programs is randomly 
generated. Then, the new population is created by applying 
genetic operators to the individuals chosen from the existing 
population based on their fitness.  This process is repeated until 
the desired criteria are satisfied or the number of generations 
exceeds the maximum number of generation. GP has been used 
successfully in generating computer programs for solving a 
number of problems in a wide range of areas [1]. 

II.2 Grammar Guided Genetic Programming   

Grammar guided genetic programming systems are genetic 
programming systems that use grammars to set syntactical 
constraints on programs. The use of grammars also helps these 
genetic programming systems to overcome the closure 
requirement in canonical genetic programming, which cannot 
always be fulfilled [14].    

 Using grammars to set syntactical constraints was first 
introduced by Whigham [14] where context-free grammars were 
used. We shall refer Whigham’s system as GGGP for the rest of 
the paper. Basically, GGGP has the same components and 
operations as in GP; however, there are a number of significant 
differences between the two systems. In GGGP, a program is 
represented as its derivation tree in the context free grammar. 
Crossover between two programs can only be carried out by 
swapping their two sub-derivation trees that start with the inner 
nodes labelled by the same non-terminal symbol in the 

                                                 
1  The ideas of using tree-based representation of chromosomes and swapping 
sub-trees as crossover operator was first introduced in [2].   
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grammar. In mutation, a sub-derivation tree is replaced by 
a randomly generated sub-derivation tree that is derived 
from the same non-terminal symbol. GGGP demonstrated 
positive results on the 6-multiplexer problem and 
subsequently on a wide range of other problems. 

II. 3 Tree Adjunct Grammar Guided Genetic Programming  

Tree adjunct grammar guided genetic programming [6] 
(TAG3P) uses tree adjunct grammars along with context 
free grammars to set syntactical constraints as well as 
search bias for the evolution of programs.  In this 
subsection we will first give the basic concepts of tree 
adjunct grammars then the basic components of TAG3P. 

II.3.1 Tree Adjunct Grammars  

Tree-adjunct grammars are tree-rewriting systems, 
defined in [7] as follows: 

Definition 1: a tree-adjunct grammar comprises of 5-
tuple (T, V, I, A, S), where T is a finite set of terminal 
symbols; V is a finite set of non-terminal symbols (T ∩ V 
= ∅); S ∈ V is a distinguished symbol called the start 
symbol. I is a set of trees called initial trees. An initial tree 
is defined as follows: the root node is S; all interior nodes 
are labelled by non-terminal symbols; each node on the 
frontier is labelled by a terminal symbol. A is a finite set of 
trees called auxiliary trees, which can be defined as 
follows: internal nodes are labelled by non-terminal 
symbols; a node on the frontier is labelled by a terminal or 
non-terminal symbol; there is a special non-terminal node 
on the frontier called the foot node. The foot node must be 
labelled by the same (non-terminal) symbol as the root 
node of the tree. We will follow the convention in [8] to 
mark the foot node with an asterisk (*). 

The trees in E= I ∪ A are called elementary trees. Initial 
trees and auxiliary trees are denoted α and β respectively; 
and a node labelled by a non-terminal (resp. terminal) 
symbol is sometime called a non-terminal (resp. terminal) 
node. An elementary tree is called X-type if its root is 
labelled by the non-terminal symbol X.  

The key operation used with tree-adjunct grammars is 
the adjunction of trees.  Adjunction can build a new 
(derived) tree γ from an auxiliary tree β and a tree α 
(initial, auxiliary or derived). If a tree α has a non-terminal 
node labelled A, and β is an A-type tree then the 
adjunction of β into α to produce γ is as follows. Firstly, 
the sub-tree α1 rooted at A is temporarily disconnected 
from α. Next, β is attached to α to replace this sub-tree. 
Finally, α1 is attached back to the foot node of β. γ is the 
final derived tree achieved from this process. Adjunction is 
illustrated in Figure 1. 

The tree set of a TAG can be defined as follows [7]: 
      TG = {all tree t / t is completed and t is derived from 

some initial trees} 
A tree t is completed, if t is an initial tree or all of the 

leaf nodes of t are non-terminal nodes; and a tree t is said 
to be derived from a TAG G if and only if t results from an 
adjunction sequence (the derivation sequence) of the form: 

α β1(a1) β2(a2)... βn(an) , where n is an arbitrary integer,  α , βi 
(i=1,2..n) are initial and auxiliary trees of G and ai (i=1,2..n) are 
node address where adjunctions take place. An adjunction 
sequence may be denoted as (*).  The language LG generated by 
a TAG is then defined as the set of yields of all trees in TG. 

        LG = {w ∈ T* / w is the yield of some tree t ∈ TG} 
The set of languages generated by TAGs (called TAL) is a 

superset of context-free languages; and is properly included in 
indexed languages [8]. More properties of TAL can be found in 
[8]. One special class of tree-adjunct grammars (TAGs) is 
lexicalized tree-adjunct grammars (LTAG) where each 
elementary tree of a LTAG must have at least one terminal 
node. It has been proved that for any context-free grammar G, 
there exists a LTAG Glex that generates the same language and 
tree set with G (Glex is then said to strongly lexicalize G) [8]. 
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Figure 1. Adjunction. 

II.3.2 Tree Adjunct Grammar Guided Genetic Programming 

In [6], we proposed a grammar guided genetic programming 
system called TAG3P, which uses a pairs consisting of a 
context-free grammar G and its corresponding LTAG Glex to 
guide the evolutionary process. The main idea of TAG3P is to 
evolve the derivation sequence in Glex (genotype) rather than 
evolve the derivation tree in G as in [14]. Therefore, it creates a 
genotype-to-phenotype map. As in GP [9], TAG3P comprises of 
the following five main components: 

Program representation: a modified version of the linear 
derivation sequence (*), but the adjoining address of the tree βi 
is in the tree βi-1. Thus, the genome structure in TAG3P is linear 
and length-variant. Although the language and the tree set 
generated by LTAGs with the modified derivation sequence is 
yet to be determined, we have found pairs of G and Glex 
conforming to that derivation form for a number of standard 
problems in genetic programming [4], [5].   

Initialization procedure: a procedure for initializing a 
population is given in [6]. To initialize an individual, TAG3P 
starts with selecting a length at random; next, it picks up 
randomly an α tree of Glex then a random sequence of β trees 
and adjoining addresses. It has been proved that this procedure 
can always generate legal genomes of arbitrary and finite 
lengths [6]. 

Fitness Evaluation: the same as in canonical genetic 
programming [9]. 

Genetic operators:  in [6], we proposed two types of 
crossover operators, namely one-point and two-point crossover, 



and three mutation operators, which are replacement, 
insertion and deletion. The crossover operators in TAG3P 
are similar to those in genetic algorithms; however, the 
crossover point(s) is chosen carefully so that only legal 
genomes are produced.  In replacement, a gene is picked 
up at random and the adjoining address of that gene is 
replaced by another adjoining address (adjoining address 
replacement); or, the gene itself is replaced by a 
compatible gene (gene replacement) so that the resultant 
genome is stil l valid. In insertion and deletion, a gene is 
inserted into or deleted from the genome respectively. 
With these carefully designed operators, TAG3P is 
guaranteed to produce only legal genomes. Selection in 
TAG3P is similar to canonical genetic programming and 
other grammar-guided genetic programming systems. 
Currently, reproduction is not employed by TAG3P. 

Parameters: minimum length of genomes, 
MIN_LENGTH, maximum length of genomes 
MAX_LENGTH, size of population - POP_SIZE, 
maximum number of generations – MAX_GEN and 
probabili ties for genetic operators. 

 Some analysis of the advantages of TAG3P can be 
found in [4]-[6].  

II .4 Other Grammar Guided Genetic Programming Systems  

Wong and Leung [15] used logic grammars to combine 
inductive logic programming and genetic programming. 
They have succeeded in incorporating domain knowledge 
into logic grammars to guide the evolutionary process of 
logic programs.  

Ryan and his co-workers [13] proposed a system called 
grammatical evolution (GE), which can evolve programs 
in any language, provided that this language can be 
described by a context-free grammar. Their system differs 
from Whigham’s system in that it does not evolve 
derivation trees directly. Instead, genomes in GE are 
binary strings representing eight-bit numbers; each number 
is used to make the choice of the production rule for the 
non-terminal symbol being processed. GE has been shown 
to outperform canonical GP on a number of problems [10]. 

III. SYMBOLIC REGRESSION PROBLEM 

 The symbolic regression problem can be stated as 
finding a function in symbolic form that fits a given finite 
sample of data [9]. In [9], the problem is restricted to 
finding a function of one independent variable.  As in [9], 
the function set for GP in this paper is { +, -, * , /, sin, cos, 
Log, Exp} , and the terminal set is { X} . The problem space 
for GGGP and TAG3P can be described by a finitely 
ambiguous context-free grammar G and the corresponding 
lexicalized tree-adjunct grammar Glex as follows [4]. 

The context-free grammar for the symbolic regression 
problem: G = (N={ EXP, PRE, OP, VAR,} ,T= { X, sin, 
cos, log, ep, +, -, * , /, (, )} ,P,{ EXP} } where ep is the 
exponential function, and the rule set P={ EXP→EXP OP 
EXP, EXP→PRE (EXP), EXP→VAR, OP→+, OP→ - , 

OP→* , OP→/, PRE→ in, PRE→cos, PRE→log, PRE→ep, 
VAR→ X} . 

The tree adjunct grammar for the symbolic regression 
problem: Glex= { N={ EXP, PRE, OP,VAR} ,T={ X, sin, cos, log, 
ep,+, -, * , /, (, )} , I, A) where I∪ A is as in Figure 2. 
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Figure 2 Elementary trees for Glex. 

A variation of the simple symbolic regression above is known 
as the trigonometric identities problem [9], where the basic 
trigonometric function of the target function does not appear in 
the function set. We wil l follow [9] in setting the function set 
for GP is { +, -, *, /, sin} , and the terminal set is {X, 1.0} . The 
target function is cos(2X) as in [9]. The context free grammar G 
and its corresponding LTAG Glex for GGGP and TAG3P are as 
follows [5]. 

The context-free grammar for the problem of finding 
trigonometric identities: G = (N, T, P, {EXP} ). Where 
N={ EXP, PRE, OP, VAR, NUM} is the set of non-terminal 
symbols; T= { X, sin, +, -, * , /, (,), 1.0} , P, { EXP} ) is the set of 
terminal symbols; EXP is the start symbol; and the rule set 
P={ EXP→EXP OP EXP, EXP→ PRE(EXP), EXP→VAR, 
EXP→ NUM, OP→ +, OP→  - , OP→ * , OP→ /, PRE→ sin , 
VAR→ X, NUM→ 1.0} . 

The tree-adjunct grammar for the problem of finding 
trigonometric identities Glex= (N, T, I, A). Where N={EXP, 
PRE, OP, VAR, NUM} is the set of non-terminal symbols; T={ 
X, sin, +, -, *, /, (, ), 1.0} is the set of terminal symbols; and I 
and A are the sets of initial and auxiliary trees respectively.  The 
set of the elementary trees I ∪ A is as in Figure 3.  

IV. EXPERIMENTAL DESIGN 

Five experiments were conducted. In the first four 
experiments, we tried all three systems on the symbolic 
regression problem with four different target functions namely, 
F1=X2+X, F2=X3+X2+X, F3=X4+X3+X2+X, and 
F4=X5+X4+X3+X2+X.  

The aim of the experiments was not only to compare the 
abil ities of GP, GGGP and TAG3P in inducing the target 



function from the sampled data but also to observe their 
efficiency when the structural complexity of the target 
function was increased. It should be noted that each Fi 
above (i=2,3,4) can be represented as Fi-1*X+X. 
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Figure3. Elementary trees for Glex the β1-β8 are the same as the β1-β8 in 

Figure 2. 

In the fifth experiment, all three systems were 
experimented on the trigonometric identities problem with 
cos(2X) as the target function. The aim was to derive the 
three alternative identities, namely, 1-2sin2(X), 
cos(2X+π/2) and cos(π/2-2X).  Table 1 summarises the 
experimental design for the three systems.  

V. RESULTS 

In each experiment, 150 runs were conducted; 50 runs 
for each system. During these runs GP, GGGP and TAG3P 
used the same data set. The number of successful runs for 
each system is summarised in table 2. 

In the first experiment, the three system discovered the 
exact solution almost all the time. One of the reasons for 
this success is that the structural complexity of the target 
function is small. Figure 4 depicts their cumulative 
frequencies. GP and TAG3P found the solution at quite 
early generations whereas GGGP found the solution 
somewhat later. 

The cumulative frequencies in the second experiment 
were shown in Figure 5. The efficiency of TAG3P was 
maintained when the target function was changed from F1 

to F2. In contrast, the probability of success for GP and 
GGGP decreased dramatically. In this experiment, GGGP 
slightly outperformed GP. 

Figure 6 shows the cumulative frequencies of all three 
systems for target function F3 in the third experiment. 

Once again, there was a big fall in the probability of 
success of GP and GGGP where the target function was 
made slightly more complex in structure. On the contrary, 
TAG3P still handled the increase in the structural 
complexity of the target function. 

The cumulative frequencies for function F4 are recorded 
in Figure 7. The results confirm those for F3: TAG3P  

Objective Find a function of one independent 
variable and one dependant variable 
that fits a given sample of 20 (xi, yi) 
data points, where the target functions 
are F1-F4, cos(2X).  

Terminal Operands X (the independent variable) in 
experiments 1 to 4; {X, 1.0} in 
experiment 5. 

Terminal Operators The binary operators are +,-,*,/. The 
unary operators are sin, cos, exp and 
log in experiment 1 to 4; and it is only 
sin in experiment 5. 

Fitness Cases The sample of 20 points in the interval 
[-1..+1] in experiments 1 to 4, and in 
the interval [0..2π] in experiment 5. 

Raw fitness The sum, taken over 20 fitness cases, of 
the errors. 

Standardized 
Fitness 

Same as raw fitness. 

Hits The number of fitness cases for which 
the error less than 0.01. 

Genetic Operators Tournament selection, one-point 
crossover and gene replacement for 
TAG3P. Tournament selection, normal 
crossovers and mutations for GP and 
GGGP. 

Parameters The crossover probability for GP, 
GGGP, TAG3P is 0.9. The mutation 
probability for GP and GGGP is 0.1. 
Replacement probability for TAG3P is 
0.01 for experiments 1 to 4 and 0.05 for 
experiment 5. Tournament size is 3. 
MAX_GEN is 30 in experiments 1 to 4 
and 200 in experiment 5. 
POP_SIZE=500. 

Success predicate An individual scores 20 hits. 

Table1. Experimental setups for GP, GGGP and TAG3P. 

Target functions GP GGGP TAG3P 
F1 47(94%) 46(92%) 50(100%) 
F2 30(60%) 32(64%) 50(100%) 
F3 21(42%) 24(48%) 48(96%) 
F4 9(18%) 14(28%) 42(84%) 
Cos(2x) 0(0%) 10(20%) 18(36%) 

Table2. Number of successful runs for three systems in five experiments. 

significantly outperformed GP and GGGP and still worked well 
when the target function was once again made more complex in 
terms of structural complexity. 

In the last experiment, we tried all three systems on the 
trigonometric identities problem. The target function was cos 
(2X). This target function is harder to induce than in the last 
four experiments because the function cos was excluded from 
the function set in this experiment. Consequently, the number of 
successful runs for GP, GGGP and TAG3P lower. Figure 8 
depicts the cumulative frequencies of the three systems. 



 

Figure 4. Cumulative frequencies of GP, GGGP and TAG3P in 
experiment 1, where the target function is X2+X. 

 

Figure 5. Cumulative frequencies of GP, GGGP and TAG3P in 
experiment 2, where the target function is X3+X2+X. 

 
Figure 6. Cumulative frequencies of GP, GGGP and TAG3P in 

experiment 3, where the target function is X4+X3+X2+X. 

 

Figure 7. Cumulative frequencies of GP, GGGP and TAG3P in experiment 4, 
where the target function is X5+X4+X3+X2+X. 

 

Figure 8. Cumulative frequencies of GP, GGGP and TAG3P in experiment 5, 
where the target function is cos(2X). 

GGGP and TAG3P discovered all the three alternative 
representations of the cos(2X) function mentioned in the 
previous section. For GGGP, 1 out of 10 successful runs 
discovered the exact representation 1-2sin2(X), and the rest 
found approximate representations of cos(2X+π/2) and cos(π/2-
2X). Here we consider a function F as an approximate 
representation of the two above functions if it is of the form cos 
(2X+A) or cos (A-2X) (where A is a constant close to π/2) it 
scores all 20 hits, and its raw fitness is smaller than 0.02.  Of the 
18 successful runs for TAG3P, the number of exact and 
approximate representations found by were 2 and 16 
respectively.       

One of the reasons for the good performance of TAG3P on 
the above problems lies with the superior capability of TAG3P 
in preserving and combining building blocks [4], [5]. Building 
blocks [11], [12] are sub-trees, which are not completed. 
Functionally, they can be viewed as some potential modules.  



For example, the atomic building blocks for the target 
functions in the first four experiments could be X+t and 
X*t, where t is a parameter representing the incomplete 
portion of the tree, which are exactly β1 and β3 in Figure 2 
[4]. During the evolutionary process, these building blocks 
are preserved and combined to make even better building 
blocks. For instance, if β1, β3 and β3 are brought together in 
a chromosome then the corresponding blocks in the 
phenotype space will be X+X2+t after adjunction takes 
place. The atomic building blocks in TAG3P for the 
trigonometric identities was found in [5] as sin(2x+1+ t), 
sin(2x+sin(1/sin(1) + t), sin(2x+1+1/sin(1)+ t), sin(1-2x+ 
t), sin(sin(1/sin(1))-2x+ t), and sin(1/sin(1)+1-2x + t), 
which result from short sequences of some beta trees in 
Figure 3.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have empirically shown that, with all 
the target functions attempted, TAG3P outperforms GP 
and GGGP significantly on the symbolic regression and its 
slightly modified version, namely, trigonometric identities. 
The results also show that the performance of TAG3P 
compared to GP and GGGP scales better as the structural 
complexity of the target function is increased.  

In [3], we used TAG3P with tree adjoining address 
replacement as the mutation operator to solve the symbolic 
regression problem, where the target function was F3. The 
result was not as good as in this paper (probability of 
success was 64%). This was a result of premature 
convergence. In this paper, we used a more disruptive 
replacement operator, gene replacement. Consequently, we 
increased the diversity of the population and got much 
better results. In future, we wil l be investigating further 
more disruptive operators and mechanisms for diversity 
maintenance.  

The current version of TAG3P uses a restricted (linear) 
form of the derivation sequence, which is sufficient for 
many context-free languages, but not all . We are currently 
developing a TAG-based GP system with the most general 
form of derivation sequence so as to make TAG3P 
universal for problems with a context-free search space.  
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