
G

Abstract—In this paper, we show some experimental results
using Incremental Evaluation with Tree Adjoining Grammar
Guided Genetic Programming (DEVTAG) on two symbolic
regression problems, a benchmark polynomial fitting problem
in genetic programming, and a Fourier series problem (saw-
tooth problem). In our pilot study, we compare results with
standard Genetic Programming (GP) and the original Tree
Adjoining Grammar Guided Genetic Programming. Our
results on the two problems are good, outperforming both
standard GP and the original TAG3P.

I. INTRODUCTION

enetic Programming (GP) was investigated by Koza in
1992 [2]. It is an automatic learning methodology using

simulation of evolution to discover functional programs to
solve a problem. Genetic programming breeds a population
of trial solutions using biologically inspired operators, which
include reproduction, crossover (sexual recombination) and
mutation, combined with selection. In essence, it uses
evolutionary search methods to search an in-principle
unbounded space of expressions for solutions to given
problems. However the solutions found are generally poorly
structured and highly disorganised, exhibiting no
hierarchical or modular structure. An individual in a genetic
programming system is generally expected to solve
problems immediately, without benefit of a developmental
phase. In contrast, the natural evolutionary systems on which
it is based are able to evolve hierarchical modular structure
(e.g. the homoeobox gene complex). Generating
hierarchical, modular structures would greatly benefit GP,
potentially dramatically increasing the scalability of GP

G

Tuan Hao Hoang is with the University of New South Wales @ ADFA,
Canberra ACT 2600 Australia (tel +61 2 62688693, fax +61 2 6268 8581,
email: t.hao@adfa.edu.au)

Daryl Essam is with the University of New South Wales @ ADFA,
Canberra ACT 2600 Australia. email: d.essam@adfa.edu.au

Bob McKay is with Seoul National University, Seoul 151744, Korea;
email: rim@cse.snu.ac.kr

Xuan Hoai Nguyen is with the Vietnamese Military Technical Academy,
Hanoi, Vietnam, email: nxhoai@gmail.com

This is a self-archived copy of the accepted paper, self-archived under
IEEE policy. The authoritative, published version can be found at
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1688570&tag=1

application, as well as the adaptability of GP solutions. In
fact, many approaches have been investigated for
developmental GP; for example, Angeline and Pollack
developed an alternative technique called Module
Acquisition [3] which is based on the creation and
administration of a library of modules for the automatic
generation of subroutines. Other studies have investigated
Automatically Defined Functions (ADF) – based GP [4],
which is probably the most popular of the modularization
methods currently used in GP. In ADFs, along with a main
tree, additional branches are maintained from the root of the
tree which define ADFs. An ADF is called just as if it
belonged to the primitive set. Thus the hierarchy of
components is fixed; despite this, it boosts the power of
solution discovery, especially for problems with regular
solutions, or those decomposable into smaller sub-problems.

Recently, interest in developmental approaches in
Evolvable Hardware has begun to increase. Haddow et al.
used Lindenmayer systems for digital circuit design [6],
while Miller developed Cartesian Genetic Programming for
the automatic evolution of digital circuits, and attempted to
evolve a cell that could construct a larger program by
iteration of the cell’s program [7].

Nevertheless, hierarchical structure has not been clearly
demonstrated in existing developmental GP systems. We
argue that this is because modular structure, if used for a
single evaluation as in most artificial developmental
systems, only has adaptive advantages to entire species, not
to particular individuals, and hence cannot be selected for by
evolution. In developmental biological systems, on the other
hand, evaluation is continuous throughout development (if
the individual is insufficiently fit to survive at a particular
stage of development, the fitness it would exhibit at later
stages is immaterial). A modular structure, which allows
biological sub-systems to develop in synchrony throughout
development, can thus provide a selective advantage to the
individual. Our working hypothesis is that, if the individual
is evaluated on multiple problems at different stages of
development, then modular structure can provide an

Solving Symbolic Regression Problems Using Incremental
Evaluation In Genetic Programming

Hoang Tuan Hao(1), R.I. (Bob) McKay(2) , Daryl Essam(1) and Nguyen Xuan Hoai(3)

1 School of ITEE, University of New South Wales
@ Australian Defence Force Academy, Canberra, Australia.

 Email: Hao: t.hao@adfa.edu.au

 Daryl:daryl@cs.adfa.edu.au

2 School of Computer Science & Engineering, College of
 Engineering, Seoul National University, San 56-1, Sinlim-dong,

Gwanak-gu, Seoul 151-744, Korea

 Email: rim@cse.snu.ac.kr

3 Vietnamese Military Technical Academy, Hanoi, Vietnam.
Email: nxhoai@gmail.com

adaptive advantage to that particular individual, and hence
can be selected for by evolution. This hypothesis is
investigated using the representation of the Tree Adjoining
Grammar Guided GP system (TAG3P) which has useful
properties for supporting evaluation during incremental
development. In particular, TAG has a feasibility property,
allowing any TAG expression tree to be evaluated regardless
of the detachment of any number of its sub-trees. This means
that smaller sections of the tree can easily be tested on
simpler problems, providing a straightforward way to test
our hypothesis at relatively low implementation cost.

Preliminary results on the polynomial Symbolic
Regression problem using incremental evaluation in TAG
[11] have been interesting, and encouraged us to do further
experiments on that problem, and also on a more difficult
problem, the sawtooth wave – Fourier series problem.

The paper outline is as follows. The next section briefly
describes Tree Adjoing Grammars (TAGs), and TAG based
Genetic Programming. Section 3 introduces our Incremental
Evaluation method based on Tree Adjoining Grammar
Guided Genetic Programming (DEVTAG) and reviews our
earlier work on the Symbolic Regression problem.
Experimental setups are described in section 4. Section 5
and 6 provide the results and discussion. Conclusion and
future work are laid out in the last section.

II.TREE ADJOING GRAMMAR- TREE BASED GENETIC
PROGRAMMING

A. Tree Adjoining Grammar

Tree adjoining grammars (TAGs) are tree-generating and
analysis systems, first proposed by Joshi et al in [8]. Tree
Adjoining Grammars (TAGs) have become increasingly
important in Natural Language Processing (NLP) since their
introduction.

The aim of TAGs is to more directly represent the structure
of natural languages than is possible in Chomsky languages,
and in particular, to represent the process by which natural
language sentences can be built up from a relatively small
set of basic linguistic units by inclusion of insertable sub-
structures. Thus ‘The cat sat on the mat’ becomes ‘The big
black cat sat lazily on the comfortable mat which it had
commandeered’ by the subsequent insertion of the elements
‘big’, ‘black’, ‘lazily’, ‘comfortable’, and ‘which it had
commandeered’. This process is much more directly
represented in TAGs than in the better-known Context Free
Grammar (CFGs).

In more detail, a tree-adjoining grammar comprises a
quintuple (T, V, I, A, S), where:
 - T is a finite set of terminal symbols.
 - V is a finite set of non-terminal symbols (T V =).

- S V is a distinguished symbol called the start
symbol.

- I are initial trees, which are characterized by: all interior
nodes being labeled by non-terminal symbols, while the
nodes on the frontier are labeled either by terminal or non-
terminal symbols. Non-terminal symbols on the frontier of
an initial tree are marked with a down arrow ().

- A are auxiliary trees, which are characterized by all
internal nodes being labeled by non-terminal symbols, while
nodes on the frontier are labeled either by terminal or non-
terminal symbols. Amongst the non-terminal-labeled
symbolds on the frontier, there is one special one, the foot
node. The foot node must be labeled with the same non-
terminal symbol as that labeling the tree’s root node. The
convention of marking the foot node with an asterisk (*) is
followed here.

The trees in E= I A are called elementary trees. Initial
trees and auxiliary trees are indicated as and
respectively; and a node labeled by a non-terminal (terminal)
symbol is usually called a non-terminal (terminal) node. A
tree with root labeled by non-terminal symbol X is called an
X-type elementary tree.

Lexicalized TAGs (LTAGs) contain at least one terminal
node in each of their elementary trees. It has been proven
that for any context-free grammar G, there exists an LTAG
Glex that generates the same language and tree set as G. The
derivation trees in G are the derived trees of Glex.

The key operation used with tree-adjoining grammars is
the adjunction of trees. A brief description follows; more
details can be seen in [1].

Adjunction builds a new (derived) tree from an
auxiliary tree and a tree (which may be initial,
auxiliary or derived) by inserting into at an
appropriate place. More formally, if a tree has an interior
node labeled A, and is an A-type tree, the adjunction of
 into to produce is as follows: Firstly, the sub-tree 1
rooted at A is temporarily disconnected from . Next, is
attached to to replace the sub-tree. Finally, 1 is attached
back to the foot node of . is the final derived tree
achieved from this process. Adjunction is illustrated in
Figure 1.

B.
B.
B.
B.
B.
B.
B.
B.
B.
B.
B.
B.

TAG based Genetic Programming

Tree Ajoining Grammar Guided Genetic Programming
(TAG3P) [1] is a grammar guided genetic programming
system using context-free grammars and tree-adjoining

Fig. 1. An Example of Adjuction Operator

grammars to set syntactical constraints and search bias for
the evolution of programs. An important property of TAG
representation is a feasibility property, thanks to which, in
growing a derivation tree from the root, one can stop at any
time and still have a valid derivation tree, as well as a valid
derived tree. Feasibility helps TAG3P to control the exact
size of its chromosomes, as well as to implement a wide
range of new operators, both biologically inspired –
including relocation [1] and duplication [12] – and also
operators such as point insertion and deletion, motivated
mainly by their local search effects.

The TAG3P system from [1] has five main components:

1) Parameters: The minimum and maximum sizes of
genomes (MIN_SIZE, MAX_SIZE), size of population
(POP_SIZE), maximum number of generations
(MAX_GEN) and probabilities for genetic operators.

2) Initialisation procedure: The process of randomly
generating an LTAG derivation tree begins with choosing a
random size between MINSIZE and MAXSIZE, and then
selecting a random -tree from the initial tree set to make an
initial Glex derivation tree. This derivation tree is
subsequently augmented by -trees randomly drawn from
the auxiliary tree set in Glex by using adjunction at random
places. This process repeats until the chosen size is reached.

3) Fitness evaluation: Each individual in TAG3P is
translated into a derived context-free grammar tree first.
After that, the evaluation is computed on that derived tree in
the same way as in Context-Free Grammar-Guided Genetic
Programming: the function defined by the leaf nodes is
evaluated. The search space is thus defined by the grammar -
the set of all GP expression trees which may be generated by
the given grammar, within the specified complexity bound.
However, unlike most other tree-based GP systems, because
of the feasibility property, tree size rather than depth is used
as the complexity bound.

4) Selection methodology and reproduction: In TAG3P, a
selection methodology is performed before applying any
other genetic operators. To do this, TAG3P selects one
(mutation) or two (crossover) individual programs from the
population with a probability based on their fitness
measures. The selection operator used in this paper is
tournament selection. In the tournament selection method, a
fixed number of programs or trees are chosen at random, and
the one with the smallest fitness value wins.

5) Crossover: The crossover process occurs between two
parent individuals, namely two Glex derivation trees t1 and t2
chosen from the population by applying the selection
method. First, two nodes in the two trees may be accepted if
the sub-tree under each can adjoin to the parent node of the
other. Random sampling of nodes in each tree is repeated,
until either two such nodes are successfully found in t1 and
t2, or the number of trial exceeds a predefined bound. In the
second case, crossover will not happen. After that, if two
such nodes are found, the crossover is completed by
swapping the sub-trees beneath these two nodes (there is
some additional book-keeping, as in most GP systems, to

ensure that the individuals produced by crossover satisfy the
condition that the size of the individuals produced lie
between MINSIZE and MAXSIZE)

6) Mutation: For the mutation operation, a sub-tree of a tree
is chosen at random. It is then removed and replaced by a
new sub-tree of the same size generated in the same manner
as the initialization procedure.

III. INCREMENTAL EVALUATION BASED ON TAG3P

This paper continues our previous pilot study [11] of a
preliminary developmental evaluation system based on
TAG3P. In this work, the developmental process is minimal,
as our focus at this stage is still on the evaluation aspect of
developmental evaluation. The developmental process
consists simply of revealing more of the genotype of the
individual at each stage of development – conceptually, this
corresponds to the simple developmental processes of lower
organisms, without the feedback loops and complexities of
higher organisms.

To take a concrete example, one of the problem classes
considered in this paper arises from fitting Fourier series to a
sawtooth wave (or from a physical perspective, from taking
the outputs of a series of low-pass filters of increasing
frequency). A sawtooth wave may be approximated by finite
segments of the Fourier series Y=sinX+(1/2)*sin(2*X)+
(1/3)*sin(3*X)+…. Suppose we are given randomly sampled
(X,Y) values from some of the lower terms in this series.
Can we, without relying on the information that this is a
Fourier series, recover the underlying functions? In effect,
we are attempting to solve a family of symbolic regression
problems.

We define
F1 = sinX
F2 = sinX+(1/2)*sin(2*X)
F3 = sinX +(1/2)*sin(2*X)+(1/3)*sin(3*X)
F4= sinX+(1/2)*sin(2*X)+(1/3)*sin(3*X)+(1/4)*sin(4*X)
…
F9=sinX+(1/2)*sin(2*X)+(1/3)*sin(3*X)+(1/4)*sin(4*X)

+(1/5)*sin(5*X)+(1/6)*sin(6*X)+(1/7)*sin(7*X)
 +(1/8)*sin(8*X)+(1/9)*sin(9*X)
We aim to exploit the gradual and systematic increase in

problem difficulty to solve the final (quite difficult)
symbolic regression problem. Koza [2] and others have
studied the discovery of Fourier series by GP; our aim is
very different, using Fourier series as a way of defining a
family of related problems. The much weaker biases of our
approach render the results difficult to compare fairly.

To achieve this, the individual is separated into layers of
fixed depth (corresponding to the stages of the
developmental process). For the simplest problems, only
shallow depths of the individual are used (corresponding to
young biological organisms coping with limited
environmental challenges). Increasingly more of the
individual is used to handle more complex problems
(corresponding to an individual handling more challenging
environments as it grows and ages). The ability to do this is

a consequence of the feasibility property of the TAG3P
representation, that any rooted subtree of a valid TAG3P tree
is also a valid TAG3P tree. Thus if we truncate the tree to a
given depth, we still have a tree which can be evaluated. In
the particular problem family considered here, the tree might
be divided as follows:

Depth 2 used to solve function F1
Depth 7 used to solve function F2
Depth 12 used to solve function F3
…
Depth 42 used to solve function F9

(Note that the schedule of depths is one of the necessary
parameters of this approach; we consider this issue in
more depth in the discussion).

We use tournament selection, which only requires a
fitness partial ordering of individuals. For DEVTAG, we use
a special multi-stage comparison to generate this ordering.
Corresponding to the biological insight that later-stage
fitness is only important if the individual survives earlier
stages, we compare individuals on simpler problems first;
only if they are roughly equivalent on the simpler problems
do we evaluate them on more complex ones.

We denote the fitness of an individual I evaluated at stage
j by F(I,j). For two individuals (I1, I2), the comparison
process (for minimisation) is:
i := 1;
While |F(I1, i) - F(I2, i)| <

i := i + 1;
if (F(I1, i) < F(I2, i))

then I1 wins
else I2 wins
An example of this algorithm is shown in Figure 2,

comparing the individuals I1 and I2 with fitness value arrays
(corresponding to the 9 different stages), I1(10.05, 14.67… ,
20.35), and I2 (10.06, 14.66, … , 10.35). In this case, I2

would be chosen for evolution.

IV. EXPERIMENTAL SETUPS

As in most grammar-based GP systems, the search space
is delineated by a grammar. The context-free grammar G for
the first experiments in this paper has a function set
including unary and binary operators {+, - ,*, /, sin, cos, log,
exp}. The terminal sets are X and 1.0.

Formally:
G = (N,T,P,S}
S = EXP – the start symbol
N = {EXP, PRE, OP, VAR, CONST}
T = {x, 1.0, sin, cos, lg, ep, +, -, *, /},

(ep is exponential, lg is log function).

P consists of
EXP EXP OP EXP | PRE EXP | VAR | CONST
OP + | - | * | /
PRE sin | cos | lg | ep
VAR x
CONST 1.0
G and Glex are described in more detail in [11].
The first set of problems we will consider is symbolic

regression for a simpler (and well-studied) family of
polynomial functions, originally due to Koza [2].

F1 = X
F2 = X2+ X
F3 = X3+X2+X
F4 = X4+ X3+X2+X
 …
F9 = X9+X8+X7+X6+X5+X4+X3+X2+X
Some preliminary results using our incremental evaluation

method on this incremental problem family were presented
in [11]. There, we reported that, with the same number of
function evaluations, DEVTAG significantly outperformed
both standard tree-based GP and the original, GP-like
TAG3P. For example, in an experimental setting with

Fig. 2. An Example of comparing two individuals in DEVTAG

TABLE I
PARAMETER SETTING FOR POLYNOMIAL, (FOURIER) PROBLEMS

Objective Find a function that fits a given sample of 20 (40)
(xi, yi) data points.

Success Predicate Sum of errors over 20 (40) points < = 0.01 (0.1)

Terminal sets X - the independent variable
(ONE - the constant)

Operators(Function set) +,-,*,/, sin, cos, exp, log

Fitness Cases The sample of 20 (40) points in the interval
[-1..1] ([0..20*]).

Fitness Sum of the errors over 20 (40) fitness cases.

Genetic Operators Tournament selection(3), sub-tree crossover and
sub-tree mutations for all systems considered

Parameters The crossover probability is 0.9.
The mutation probability is 0.1

Min/Max initial size for
TAG3P, DEVTAG

2 to 1000

Max depth for GP 30

Depth schedule 2, 4, …, 18 (2, 7, …, 42)

Population size 250 (250)

population size 250, and a budget of 229,500 function
evaluations DEVTAG’s probability of success was 33%,
well above that achieved by the other treatments – TAG3P’s
probability of success was 8%, while no successes were
achieved in 100 GP runs. However those experiments left
open some further questions.

First, the good performance of DEVTAG could result
from some other aspect of the DEVTAG system than
incremental evaluation. Three further treatments were
implemented, using variants of TAG3P and GP.

1) gGP: This treatment was designed to address a
potential issue, that differences exhibited by DEVTAG
might arise simply from the increasing difficulty of fitness
functions in DEVTAG, independent of the developmental
process. In this treatment, F1 is used for the first 229,500/9 =
25,500 evaluations, then F2, and so on; more formally, for i
from 0 to 8, generation (i*MAXGEN) to generation
(i+1)*MAXGEN - 1 use fitness function F(i+1). Otherwise,
the treatment is identical to GP.

2) gTAG: The corresponding treatment to gGP, but applied
to the TAG representation.

3) DEVTAGF9ALL: This treatment is designed to address
the converse issue, Differences noted in DEVTAG
performance might arise simply from the incremental
evaluation giving an opportunity to find small solutions,
without any need for changing fitness functions. This
treatment uses the multi-stage evaluations of DEVTAG, but
each stage is evaluated using the fitness function F9, instead
of varying through the family F1 to F9.

Second, the good performance of DEVTAG could be
restricted to this particular problem set, with its very highly
structured solutions. To evaluate this, we chose a slightly
less regular problem set (a Fourier series) as a second set of
test functions. The Fourier family is also relatively regular,
but this is hardly surprising. Our developmental evaluation
hypothesis (that developmental evaluation is important in
developing modular solutions to decomposable problems)
relies on the assumption of decomposability and regularity;
we do not expect the developmental evaluation approach to
provide any benefit unless there is some modular structure
available to be discovered.

For the Fourier problem, we chose to compare the basic
three algorithms (DEVTAG, TAG and GP), the results of the
previous experiments giving us no reason to continue with
gGP, gTAG or DEVTAGF9ALL. To give comparability on
node evaluations, we first ran DEVTAG for 229,500
function evaluations, to determine how many node
evaluations it used. We then provided a budget of at least
that number of node evaluations to the other algorithms.

A further complication arose: GP and TAG individuals
frequently evaluated to NaN or INF values. Note that a tree
only has to evaluate to NaN or INF on one of the 40 input
instances to cause problems. Since these values cause
difficulty in evaluating performance averages, we handled it
by resetting them to a very bad fitness value (100).

This problem turned out to be extremely hard for all three

algorithms, though the results are favourable to DEVTAG.
To simplify the problems somewhat, we ran a further three
treatments denoted with the suffix ‘+’. These used exactly
the same experimental settings as the previous three
treatments, except that partial solutions in the form of eight
extra trees were added to the TAG and DEVTAG
grammar, the beta trees encoding the expressions:

beta1= +(1/2)*sin(2*X)
beta2 = +(1/3)*sin(3*X)
 …
beta8 = +(1/9)*sin(9*X)

In the GP treatment, we considered each of these formulae
as a term with arity 0, and added it to the GP term set.

V. RESULTS

A. The polynomial symbolic regression set:

Firstly, we consider the new, more detailed, polynomial
symbolic regression results. Table 2 shows the absolute
number of successful runs out of 100, for each of the six
treatments (the original TAG, GP and DEVTAG treatments,
together with the new treatments testing alternative
hypotheses for the performance of DEVTAG), using a
population size of 250. Note that the 0 entries mean we have
not found any successful runs using the GP, gGP or
DEVTAGF9ALL treatments.

From these results, we can safely conclude that the
performance of DEVTAG may be partly due to the
representation (TAG vs GP), and may also be assisted by the
increasing difficulty of fitness function (gTAG), but is not
simply due to the Incremental process (DEVTAGF9ALL). It
appears that the full developmental evaluation method is
required to achieve the performance of DEVTAG. This is
covered in more detail in the discussion section; for now, we
simply note that the experiments confirm that there is little
point in continuing with these treatments, they do not
explain the performance of DEVTAG.

Fig. 4. Average Fitness of the best individuals for fouriere problem at
each generation of 9 functions on DEVTAG vs Total number of node
evaluation

Fig. 3. Average fitness of the best individuals for fourier problem at
each generation of DEVTAG, TAG, and GP vs Total number of node
evaluation

B. Fourier series problem:

For the Fourier series problem, Figure 3 shows the
average fitness for each of the three treatments. We use a
slightly non-standard presentation in these plots. In most
evolutionary computation papers, the X axis represents the
number of function evaluations. This is natural in the general
field, where most methods have fixed evaluation cost. Even
in GP, where evaluation costs may vary, it is generally
reasonable because the average evaluation cost is similar
between the methods being compared. However one of the
primary aims of our incremental evaluation method is to
evolve highly structured, compact genomes. Thus we expect
the evaluation cost of our individuals to be less than that for
most GP systems. To ensure a fair comparison, we compute
the total number of node evaluations, so as to more
accurately assess the true computational cost, and use it as
the X axis in the relevant figures.

Each point in the plot describes the mean, over 30 runs for
those treatments, of the best individual in each population at
the given total number of node evaluation. Figure 4 shows
the average fitness error, of some Fourier functions: F1, F2,
F7, F8, and F9, of the best individual at each generation of
the DEVTAG experiment. Figures 5 and 6 are parallel to
Figures 3 and 4 respectively but using the additional
grammar productions / terms described at the end of the
previous section.

VI. DISCUSSION

From table 2, it is clear that incremental evaluation is very
effective at finding exact or near-exact solutions to the
Symbolic Regression problem. At population size 250,
DEVTAG’s probability of success was 33%, well above that
achieved by any other treatment. It is also clear that this is an
extremely difficult task for standard GP. It’s worth noting
that DEVTAG gives us solutions to all the other eight
functions, at no extra computation cost.

In passing, we note also that the performance of TAG is
surprisingly good, so that the representation is clearly an

Fig. 3. Average fitness of the best individuals at each generation of
FR_DEVTAG, FR_TAG, and FR_GP vs Total number of node
evaluation

Fig. 6. Average Fitness of the best individuals at each generation of
9 functions on DEVTAG+ vs Total number of node evaluation

TABLE II
POLYNOMIAL SYMBOLIC REGESSION SUCCESS RUNS OVER 100 RUNS

Over 100 runs

DEVTAG 33
TAG 8
gTAG 11
gGP 0
GP 0
DEVTAGF9ALL 0

TABLE III
FOURIER SERIES PROBLEM SUCCESS RUNS OVER 30 RUNS

Over 30 runs

DEVTAG+ 6
TAG+ 0
GP+ 0

Fig. 5. Average Fitness of the best individuals at each generation of
DEVTAG+, TAG+, and GP+ vs Total number of node evaluation

important contributing factor. For the polynomial symbolic
regression, the gTAG results are slightly better than those of
TAG, but not enough to be important. Thus, merely changing
the fitness function during the process of evolution isn’t the
cause of the good performance of DEVTAG. On the other
hand, DEVTAGF9ALL performs extremely poorly; we
interpret this as showing that it is difficult to solve F9 in a
small tree depth, and difficult to extend an approximate
solution at that level to a good solution at a deeper level.
That is, the results of DEVTAG are not simply the result of
having an incremental process; evaluation during the
incremental process is required to get good results.

From Figure 3, it is clear that the Fourier problem is
extremely difficult. None of the systems (TAG, GP or
DEVTAG) is able to solve F9, or even to get particularly
close to it. It’s worth noting that a trivial solution (sin X) has
fitness of just under 20 (depending on the 40 fitness cases)
for F9; that is, the expected error of sin X on a random
fitness case is just under 0.5 (the expected error of sin X on
the exact sawtooth wave being exactly 0.5). In fact, the
performance of TAG on this problem is worse than this –
that is, TAG produces so many NaNs and INFs that it is
unable even to achieve the performance of the simple
function sinX. On the other hand, GP and DEVTAG are able
to do significantly better. While the performance curves of
GP and DEVTAG are still badly affected by NaNs and
INFS, the underlying fitness curves appear to asymptote to
values around 16 and 12 respectively (0.4 and 0.3 expected
error on each fitness case). We may certainly conclude that
GP and DEVTAG out-perform TAG on this problem, and
tentatively conclude the DEVTAG’s performance is better
than GP’s. But overall, it’s clear that this is an extremely
difficult problem, too difficult for all of the systems to
achieve good performance.

We note that an important part of this difficulty may arise
from the need to find two relatively complex components in
synchrony. That is, each new term of the Fourier
approximation has the form (1/n) * sin(n*X). The two ‘n’
values, constructed from the terminals by reasonably
complex trees, need to be somewhat synchronized to make a
fitness contribution. This synchronization of learning may be
extremely difficult. To investigate the issue, we decided to
simplify the problem, avoiding synchronization
requirements, leading to the final set of experiments.

On this (much easier) problem, TAG was still unable to
make headway, average fitnesses remaining worse than those
of the trivial solution sinX. However GP and DEVTAG
performed considerably better. Both appeared able to avoid
the NaN/INF problem, with the GP runs asymptoting to an
apparent limit fitness of around 7.5 (0.175 per fitness case),
and DEVTAG to around 3 (0.075 error per fitness case).
From Table III, we see that DEVTAG, in this greatly
simplified problem, is able to learn F9 with a 20% success
rate, while TAG and GP had no success.

As before, we note that with DEVTAG, we also get, with
no extra computational cost, a 26.66% probability of finding

F8, 30% of finding F7, and higher probabilities of success
for the simpler functions.

VII. CONCLUSIONS AND FUTURE WORKS

The results of incremental evaluation using TAG
representation clearly demonstrate a form of problem-driven
incremental evolution. DEVTAG has been provided with
three families of related problems of increasing difficulty,
and it has proceeded to solve them incrementally – fairly
successfully in the two easier cases, though with only
limited success in the harder case.

It does this, though, at a cost. To run our current version
of DEVTAG, it is necessary to specify two extra parameters
beyond those normally required for a GP system, namely the
initial incremental evaluation depth, and the increment from
level to level. Naturally, there is a cost in setting these
parameters. Of course, if we know the form of the desired
solutions, they are relatively easy to estimate – but this is
cheating. The performance is sensitive to both parameters,
though we have found in tuning experiments that a relatively
wide band for each will give reasonable performance. This,
of course, is a limitation of our current incremental process,

We hypothesize that the primary issue with the more
difficult problem, is that DEVTAG has no way to directly
represent the required synchrony between the (1/n) and
sin(n*X) terms in the formula. (This might be viewed as
analogous to the problem in biological development, of
roughly synchronizing development rates for such organs as
the lens and ball of the eye, so that the eye is able to focus).

The work reported here is primarily a pilot study for a
larger-scale approach with a more sophisticated
developmental process. The TAG representation is crucial,
because it removes any difficulty in ensuring that
intermediate developmental stages can be evaluated. We are
replacing DEVTAG’s trivial developmental process with a
more sophisticated approach based on a TAG analogue to L-
systems (currently in debugging).

We hope that this system may be able to solve the first
difficulty (extra parameters) through self-adaptation. While
we will provide a fixed evaluation schedule to the L-system,
the system itself will be free to adapt the amount of change
from evaluation point to evaluation point (unlike the current
approach). We think it may not be necessary to pre-set this.

The more flexible representation should also be able to
represent more complex building blocks, and in particular, to
represent the synchronization of the 1/n and sin nX terms
directly. Of course, being able to represent a building block
doesn’t necessarily imply being able to learn it – but it is a
necessary precondition. Optimistically, the system might be
able to learn a generalized “betaN” building block, and then
specialize it as needed to beta1, beta2,..

We note that the requirement to supply a family of
problems of increasing difficulty to our system may limit its
application. The DEVTAG method creates an incremental
problem solver; it must solve a problem in stages, rather than

solving a whole problem at once. We would argue that this is
a necessary property of a powerful problem solver, but
accept that it limits the range of applicable problems.
However we note that such families of problems arise in
many important problems. Most notably, the generalization
hierarchy often provides such families in practical real-world
problems. It is often desirable to find a simple, general
model that fits a large dataset reasonably well, and specialize
it to more specific and complex models that fit specific
regions of the dataset more accurately. We aim to identify a
range of such problems, both toy and real-world, and apply
the DEVTAG approach to them.

Finally, our primary aim with this approach is to develop
systems which are able to emergently develop modular
structure, as in biological evolution. This requires
developing metrics to measure modularity. Hornby [10] has
developed such metrics, but unfortunately they rely on
specific representation of modularity, hence are not suitable
for measuring emergent modularity. An alternative is to use
compression-based metrics. A modular structure has
repeated sub-structure; hence it should be more
compressible. Thus it should be possible to use compression-
based metrics to indirectly measure modularity. Software to
do this is currently under development. However the
problem is complex. Ineffective code (bloat) typically
incorporates a large amount of repeated code. Thus the
modularity metrics should measure the compressibility of
the effective code only (otherwise, it may just measure the
amount of bloat – modularity in ineffective code is not very
interesting). Hence measuring modularity also requires us to
develop reliable methods of removing ineffective code.
While this is, in general, a Turing-incomplete problem, we
hope to report soon on some methods which, for symbolic
regression problems, do seem to eliminate the vast bulk of
the ineffective code.

REFERENCES
[1] Nguyen, Xuan Hoai, McKay, R. I. and Abbass, H. A.: Tree Adjoining

Grammars, Language Bias, and Genetic Programming. In Ryan, C.,
Soule, T., Keijzer, M., Tsang, E. P. K., Poli, R. and Costa, E. (eds):

Proceedings of EuroGP2003, Lecture Notes in Computer Science, Vol.
2610, Springer-Verlag (2003), pp. 335-344.

[2] Koza John R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cambridge,
MA, USA,1992.

[3] Angeline, P.J “Evolutionary Algorithms and Emergent Intelligence”,
PhD thesis, Computer Science Department, Ohio State University,
1994.

[4] Koza. John R. Genetic Programming II: Automatic Discovery of
Reusable Programs, MIT Press, Cambridge Massachusetts, May 1994.

[5] Rosca, Justinian P. and Ballard, Dana H.: Hierarchical Self-
Organization in Genetic Programming. In Rouveirol, C. and Sebag,
M. (eds): Proceedings of the Eleventh International Conference on
Machine Learning, Morgan Kaufmann, 1994.

[6] Haddow, P.C., Tufte G., and van Remortel P,: Shrinking the genotype:
L-systems for Evolvable Hardware. In Liu, Y., Tanaka, K., Iwata, M.,
Higuchi, T. and Yasunaga, M. (eds): Evolvable Systems: From
Biology to Hardware, 4th International Conference, ICES 2001,
Lecture Notes in Computer Science, Vol. 2210, Springer-Verlag,
Berlin – Heidelberg – New York (2001) 128 –139.

[7] Miller J.F and Thomson, P.: A Incremental Method for Growing
Graphs and Circuits. In Tyrrell, A.M., Haddow, P.C. and Torresen, J.
(eds): 4th International Conference on Evolvable Systems: From
Biology to Hardware, LNCS 2210, Springer-Verlag (2003), 93 – 104.

[8] Joshi, A.K., Levy, L. S., and Takahashi, M.: Tree adjunct grammars,
Journal of Computer and System Sciences, 21(2) (1975), 136 – 163.

[9] Nguyen Xuan Hoai, McKay, R.I., Essam, D.L. and Chau, R.: Solving
the Symbolic Regression Problem with Tree Adjunct Grammar
Guided Genetic Programming: The Comparative Results.. In Yao, X.
(ed): Congress on Evolutionary Computation (CEC2002), IEEE Press,
2002, vol. 2, 1326-1331.

[10] Hornby, Gregory S.: Measuring, Enabling and Comparing Modularity,
Regularity and Hierarchy in Evolutionary Design. In Beyer, H.-G.,
O'Reilly, M., Arnold, D. V., Banzhaf, W., Blum, C., Bonabeau, E.W.,
Cantu-Paz, E., Dasgupta, D., Deb, K., Foster, J.A., de Jong, E.,
Lipson, H., Llora, X., Mancoridis, S., Pelikan, M., Raidl, G.R., Soule,
T., Tyrrell, A.M., Watson, J.-P. and Zitzler, E.: Proceedings of the 2005
Genetic and Evolutionary Computation Conference (GECCO’05)
ACM Press (2005) Vol.2, 1729-1736

[11] McKay, RI(Bob) Hoang, Tuan Hao, Essam Daryl, Nguyen Xuan Hoai:
Incremental Evaluation Genetic Programming: The preliminary results
EuroGP2006, Lecture Notes in Computer Science (LNCS), vol. 3905,
280-289, Springer-Verlag, 2006.

[12] Nguyen Xuan Hoai, McKay, R I, Essam, D L and Hoang Tuan Hao,
2005, Genetic transposition in tree-adjoining grammar guided genetic
programming: the duplication operator. In Proceedings of the 8th
European Conference on Genetic Programming (EuroGP2005),
Springer-Verlag.

