
Benchmarking Algorithms for Dynamic Travelling Salesman Problems

Lishan Kang1,2 Aimin Zhou2 Bob McKay3 Yan Li4,1 Zhuo Kang4

1Department of Computer Science & Technology China University of Geosciences, Wuhan,P.R.China 430074
2State Key Lab of Software Engineering,Wuhan University, Wuhan, P.R.China 430072

3School of IT & EE University of New South Wales @ ADFA, Canberra, Australia 2600
4Computer Center Wuhan University Wuhan, P.R.China 430072

kang@whu.edu.cn, amzhou@hotmail.com, b.mckay@adfa.edu.au, llyyan2000@21cn.com, kang_zh@21cn.com

Abstract- Dynamic optimisation problems are becoming
increasingly important; meanwhile, progress in
optimisation techniques and in computational resources
are permitting the development of effective systems for
dynamic optimisation, resulting in a need for objective
methods to evaluate and compare different techniques.
The search for effective techniques may be seen as a
multi-objective problem, trading off time complexity
against effectiveness; hence benchmarks must be able to
compare techniques across the Pareto front, not merely
at a single point. We propose benchmarks for the
Dynamic Travelling Salesman Problem, adapted from
the CHN-144 benchmark of 144 Chinese cities for the
static Travelling Salesman Problem. We provide an
example of the use of the benchmark, and illustrate the
information that can be gleaned from analysis of the
algorithm performance on the benchmarks.

I. INTRODUCTION

With the evolution of computing environments from
centralized computing through distributed computing to
mobile computing, the confluence of Web services, peer-
to-peer systems and grid computing provide the
foundation for Internet distributed computing and mobile
computing – allowing applications to scale from
proximate Ad-hoc networks to planetary-scale distributed
systems[3]. Recently, new features such as wire and
wireless mixture, smartness, macro and micro-mobility,
ultra-scalability, interoperability and invisibility have been
added to the world of computing and communications
[6,7]. Key research challenges they commonly face are the
optimization of dynamic networking, arising from
network planning and design, load-balance routing and
traffic management [3,14,15]. They lead to a very
important theoretical mathematical model: the Dynamic
Travelling Salesman Problem (D-TSP).
A wide variety of algorithms have been proposed for the
dynamic TSP, such as ant algorithms[9,10,11,12],
competitive algorithms(on-line algorithms)[13] and
dynamic inver-over evolutionary algorithms[8], and hence
there arises a need to evaluate and compare them. This
comparison, however, is not straightforward. In common
with other optimisation problems, the search for good

algorithms is a multi-objective problem, trading off
algorithm performance against time complexity. However,
unlike static optimisation problems, in dynamic
optimisation problems the performance/complexity trade-
off is not discretionary. In static optimisation problems,
we can always wait longer for a solution. In dynamic
optimisation problems, the trade-off between performance
and time complexity is determined by the problem
difficulty and the relationship between the rate of change
and the available computing resources. So it is crucial that
there be accurate evaluation of the performance of an
algorithm at a given combination of problem complexity,
and required computing resources relative to the rate of
change. This in turn implies a need for benchmarks which
permit a fine-grained study of the performance
requirements of dynamic optimisation. In this paper, we
propose a family of such benchmarks for D-TSP, and
demonstrate the insights which may be obtained by their
application.
The paper is organized as follows: we formally define the
dynamic TSP in section 2, discuss the evaluation of
solvers in section 3, and propose benchmarks in section 4.
Section 5 discusses some experiments with the proposed
benchmarks, while section 6 gives our conclusions.

II. DEFINING THE DYNAMIC TSP

The well-known travelling salesman problem (TSP) may
be formally described as follows:
Given n cities {c1, c2, … , cn} and a cost(distance) matrix:
 nnijdD ×= }{ (1)

where dij is the cost(distance) from ci to cj, find a
permutation π = (π1, π2, . . . , πn), such that:

 ∑
=

=
+

n

i
ii

d
1

, min
1ππ (2)

where πn+1 = π1.
Definition 1: A dynamic TSP(D-TSP) is a TSP
determined by the dynamic cost (distance) matrix as
follows:
)()()}({)(tntnij tdtD ×= (3)

mailto:kang@whu.edu.cn
mailto:amzhou@hotmail.com
mailto:b.mckay@adfa.edu.au
mailto:llyyan2000@21cn.com
mailto:kang_zh@21cn.com
rim
Text Box
This is a self-archived copy of the accepted paper, self-archived un- der IEEE policy. The authoritative, published version can be found at http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1331045&tag=1

where dij(t) is the cost from city(node) ci to city cj, t is the
real world time. This means that the number of cities n(t)
and the cost matrix are time-dependent.
But first, let us generalize the above to optimisation
problems in general. An optimisation problem is defined
over a space S of solutions; for any s∈ S, there is a
corresponding objective value f(s). In a dynamic
optimisation problem, the objective value is also a time-
dependent function, f(t,s).
Definition 2: A dynamic optimisation problem DP is an
optimisation problem determined by a dynamic objective
function f(t,s), where the objective is to minimize f(t,s) for
all values of t.
However, this definition is just a theoretical model for
mobile ad-hoc networking and similar applications. In
practice, we need another approach.
For any continuous-time dynamic optimisation problem
DP, there is a family of related discrete-time dynamic
problems D*P with differing time windows. Can the D*P
problems act as tracers for the corresponding DP problem
– in other words, are the solutions always close to the
solutions of the corresponding problem DP?
Formally, we may define a D*P as follows:
Let tk, k = 0, 1, 2, … , m, t0=0 and tm= T be a sequence of
discrete real world time sampling points.
Definition 3: D*P is a series of optimisation problems
determined by the objective functions f(tk,s)
k = 0, 1, 2, …. , m-1, with time windows [tk, tk+1], where
{ }m

ikt 0= is a sequence of real world time sampling points.
In particular, for the travelling salesman problem:
Definition 4: D*-TSP is a series of TSP determined by
the cost matrix:
)()()}({)(

kk tntnkijk tdtD ×= (4)
k = 0, 1, 2, …. , m-1, with time windows [tk, tk+1], where
{ }m

ikt 0= is a sequence of real world time sampling points.
From a practical perspective, there is an additional
constraint: the objective function f(tk,s) should change
relatively slowly with tk; if the objective function changes
too quickly for algorithms to track the solution, then there
is no advantage in considering it as a dynamic
optimisation problem. It is best treated as a sequence of
independent static optimisation problems.
D-TSP and D*-TSP are certainly NP-Hard problems
(since any static TSP may be straightforwardly converted
into a D-TSP or D*-TSP with a time-invariant cost
matrix).
There are many difficult open questions in the field of
discrete-time dynamic optimization problems, because
implicitly they involve a two-objective optimization
problem. That is, D*P solvers should be designed as
solutions of a two-objective optimization problem. One
objective is to minimize the objective f(tk,s) at each time
interval – in particular, for dynamic TSP, to minimize the
length of the tour π = (π1, π2, … , πn(tk)):

∑
=

+
=

)(

1
,)())((

1

k

ii

tn

i
kk tdtd πππ (5)

where 11)(ππ =+ktn .
The other is to minimize the size of the time interval :
 sk = t - tk (6)
where t ≥ tk.
The two-objective optimization problem has a set of
Pareto optimal solvers. Different applications and users
impose different biases that lead to different solvers being
chosen. That is primarily why it is difficult to evaluate an
algorithm for a dynamic optimisation problem. A second
difficulty for evaluating an algorithm arises because the
exact solution of a dynamic optimisation problem is
usually unknown – there is limited value in designing an
algorithm for problems with a known solution. This is a
general issue for dynamic optimisation, but it arises
particularly for dynamic TSP because of its NP-hardness.
In the subsequent discussion, we consider only the
dynamic TSP.

III. DESIGNING AND EVALUATING SOLVERS FOR
D*-TSP

There are two methods for measuring the performance of
D*-TSP solvers:
(1) Online Performance:
Denote the error
 e(tk)=d(π(tk))-d(π*(tk)) (7)
where d(π *(tk)) is the length of tour π *(tk), which is the
exact solution of the D*-TSP, and π(tk) is the approximate
tour got by the D*-TSP solver A in time interval [tk , tk+1].
 The performance of a D*-TSP solver A is defined as:

))((1)(
1

0
1 k

m

k
kk ttte

T
Ae −= ∑

−

=
+ (8)

(2) Offline Performance:
Denote the error

))(())(()(kkk tdtdte ππ −= (9)

where))(ktπ is the best tour got by solver A without
time restriction (we assume that algorithm A is good
enough to solve the static TSP. The assumption is useful
in practice for large scale TSP). Then the offline
performance of D*-TSP solver A is defined as:

))((1)(
1

0
1 k

m

k
kk ttte

T
Ae −= ∑

−

=
+ (10)

IV. BENCHMARKS FOR D-TSP

If D-TSP is implicitly a multi-objective optimization
problem, then benchmarking of algorithms implicitly
requires evaluation not just at one point, but along the
Pareto front. Hence we require not just one benchmark,

but a whole series of benchmarks trading off problem
complexity against computational requirements.
We propose a family of benchmarks based on the well-
known CHN144 benchmark for static TSP, which uses the
positions of 144 Chinese cities. The positions of the 144
cities:(xi,yi),i =1,2,...,144 as specified in [4] are appended
to this paper. In satellite communications, as described in
the DARPA Airborne Communications Node Project [1],
the network routing configuration problem naturally gives
rise to a D-TSP, in which the land-based communications
nodes are fixed, but the satellite-based nodes are dynamic,
their orbits being described by the equation:
 (Xk(t)

- Xk)

2

 + (Yk(t)

- Yk)

2

 =Rk
2

(11)

k=1, 2,..., M(t), where (Xk(t), Xk(t)), k =1,2,...,M(t) are the
positions of the satellites. The positions are dependent on
the real time t, as is the number of satellites M(t). In this
case, both the D-TSP and D

•
*-TSP are symmetric, that is

dij (t)=dji(t). The parameters of the problems are m, M(ti)
for t0 (= 0), t1, t2, ..., tm (= T), Rk , and (Xk, Yk) for k =
1,2,...,M(ti).
In general, the above problems are highly dynamic, and
possibly too difficult as a benchmark for the current state
of the art in dynamic optimisation. However if M(ti)=M
=constant and the time windows [ti,ti+1]=∆t are equal, we
obtain a simpler version of the problem highly suited to
benchmarking the current state of dynamic TSP. In the
proposed benchmark, CHN144+M, there are the original
CHN144 cities, plus M satellites. The simplest case is just
one satellite node; we take the center of the orbit as (X1,Y1)
= (2531,1906) and the radius is R1 = 2905 (see Fig.1).

Figure 1: CHN144+1 Benchmark

More complex (and more realistic) CHN144+M problems
can be constructed in 3D space, using city locations
(xi,yi,zi) satisfying:
 (xi - x0)

2

+(yi - y0)
2

+(zi - z0)
2

= r
2

(12)

where (x0,y0,z0)is the center of the earth and r is the radius.
The orbits of the satellites become:
 (Xk (t) - Xk)

2

+ (Yk(t) - Yk)
2

+ (Zk(t) - Zk)
2

= Rk
2

(13)

One can adjust the parameters to meet requirements for
different dynamics, such as the frequency, severity and
predictability of changes [2]. In addition, there are other
advantages of the CHN144+M:
1. The best route ever known for CHN144 is given in the
appendix A, and the length of the shortest route is
30353.8609965236, which can be used as a lower bound
of CHN144+M for evaluating the global searching ability
of the algorithms.
2. The dynamic behavior of the system of CHN144+M
can be visualized easily. This is useful for examing the
efficiency of the algorithms, as can be seen in figure 1,
which is a screen-shot from a dynamic visualisation of
CHN144+1.

V. EXPERIMENTS WITH CHN144+1

In this section, we perform some experiments using the
CHN144+1 problem. Our aim with these experiments is to
understand the behaviour of the the Dynamic Inver-Over
Evolutionary Algorithm (DIOEA) [8] in an increasingly
dynamic environment. DIOEA is used in all experiments.
The environment for the experiments is an Intel P4
1.4GHz CPU with 256M RAM. We measure the offline
error ē, together with:
Maximum error:
)}({max

,,0 kmkm tee
L=

= (14)

Minimum error:
)}({min

,,0 kmkr tee
L=

= (15)

Average error:

 ∑
=+

=
m

t
ka te

m
e

0

))((
1

1
 (16)

A. Test 1: 40 Sampling Points in a Cycle
We start with a relatively easy test for DIOEA, in which
the satellite orbits relatively slowly, the time for a single
revolution (T1) ranging between 8.0s and 40.0s. The
optimisation algorithm is updated 40 times per revolution
(i.e ∆t ranges from 0.2s to 1.0s). Figure 2 shows the error
curve for T1 = 8.0s, and Table 1 shows the experimental
results.
TABLE 1: ERROR FOR 40 SAMPLING POINTS (LESS DYNAMIC)

T1 em er ea ē
8.0s 3.22*104 0 6.33*102 6.33*102

16.0s 4.37*104 0 5.89*102 5.89*102
24.0s 3.67*104 0 6.83*102 6.83*102
32.0s 3.55*104 0 5.48*102 5.48*102
40.0s 3.74*104 0 6.02*102 6.02*102

Figure 2 Error Curve for T1 = 8:0s(less dynamic)

B. Test 2: 20 Sampling Points in a Cycle
We now sample an increasingly dynamic environment,
with increased change between sample points. The
optimisation is carried out 20 times per revolution, with T1

ranging from 4.0s to 20.0s (ie ∆t again ranges from 0.2s to
1.0s). Figure 3 shows the error curve for T1 = 8.0s, and
Table 2 shows the experimental results.

Figure 3: Error Curve for T1 = 8:0s(dynamic)

TABLE 2: ERRORS FOR 20 SAMPLING POINTS (DYNAMIC)

T1 em er ea ē
4.0s 1.87*104 0 5.07*102 5.07*102
8.0s 1.96*104 0 5.80*102 5.80*102

12.0s 1.41*104 0 6.39*102 6.39*102
16.0s 1.11*104 0 5.75*102 5.75*102
20.0s 1.56*104 0 5.88*102 5.88*102

C. Test 3: 10 Sampling Points in a Cycle
Finally, we sample a highly dynamic environment, in
which there are only 10 sample points per revolution, and
T1 ranges from 2.0s to 10.0s (ie ∆t again ranges from 0.2s
to 1.0s). Figure 4 shows the error curve for T1 = 8.0s, and
Table 3 shows the experimental results.

Figure 4: Error Curve for T1 = 8:0s(highly dynamic)

TABLE 3: ERRORS FOR 10 SAMPLING POINTS (HIGHLY
DYNAMIC)

T1 em er ea ē
2.0s 1.43*104 0 6.10*102 6.10*102
4.0s 1.32*104 0 5.20*102 5.20*102
6.0s 1.38*104 0 5.75*102 5.75*102
8.0s 1.87*104 0 6.77*102 6.77*102

10.0s 1.51*104 0 7.08*102 7.08*102

D. Analysis
In each of the sets of experiments, we run the algorithm
10 times. All results are similar, the maximum errors are
very large, but the minimum and average errors are quite
acceptable, with the average relative errors being about
2%. The maximum errors all come from the beginnings of
the runs, at time 0. That is, MIOEA has some difficulty in
finding the optimum for the initial static TSP. However,
once found, it can track the moving optimum in a dynamic
TSP quite well. Paradoxically, the dynamic objective
provides sufficient disturbance to move MIOEA away
from the initial local optimum found, and track the global
optimum. MIOEA actually performs better on the
dynamic TSP than on a static TSP of equivalent
complexity.
Equally important, MIOEA behaves relatively well as the
frequency and severity of change increases, with a
relatively smooth decline in performance.

VI. CONCLUSIONS

In this paper, we discussed the difficulties in providing
benchmarks for dynamic optimisation problems, pointing
out the implicitly multi-objective nature of the problem,
and the concomitant requirement for a family of
benchmarks able to compare algorithms along the Pareto
front. We proposed one such family for the Dynamic
Travelling Salesman Problem, the CHN144+M family of
benchmarks, a family of problems of tunable difficulty.
Taking one subfamily of the benchmarks, the CHN144+1
problems, we investigated the performance of a current
algorithm, MIOEA, varying the frequency and severity of
change. Using the benchmarks, we were able to gain an

understanding of the behaviour of MIOEA, both of its
overall behaviour, and of its performance degradation
with frequency and severity of change.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science
Foundation of China (No.40275034 and No.60133010).

REFERENCES

[1] Airborne Communications Node at DARPA.
www.darpa.mil/ato/programs/acn.htm.

[2] J.Branke.Evolutionary Optimization in Dynamic
Environments.Norwell:Kluwer Academic Publishers,2002.

[3] D.W.Corne, M.J.Oates and G.D.Smith eds. Telecommunications
Optimization: Heuristic and Adaptive Techniques. Chichester:John
Wiley&Sons LTD,2000.

[4] L.S.Kang, Y.Xie,S.Y.You,etc. Nonnumerical Parallel
Algorithms:Simulated Annealing Algorithm. Being:Science
Press,1997.

[5] M.Milenkovic, S.H.Robinson, R.C.Knauerbase, etc. Toward
Internet Distributed Computing. Computer,36(5),pp.38 46,2003.

[6] D.Saba and A.Mukberje. Pervasive Computing:A Paradigm for the
21th Century. Computer,36(3),pp.25 31,2003.

[7] Y.C.Tseng, C.C.Shen and W.T.Chen. Integrating Mobile IP with
Ad Hoc Networks. Computer,36(5),pp.48 55,2003.

[8] A.M.Zhou, L.S.Kang and Z.Y.Yan. Solving Dynamic TSP with
Evolutionary Approach in Real Time. Proceedings of the Congress

on Evolutionary Computation, Canberra, Austrilia, 8-12, December
2003, IEEE Press, 951 – 957,2003

[9] C.J.Eyckelhof. Ant System for Dynamic Problem, the TSP Case –
Ant Canght in a Traffic Jam. Master’s thesis, Unversity of Twente,
the Netherlands, August, 2001. (http://www.eyckelhof.nl)

[10] M.Guntsch, J.Branke, M.Middendorf and H.Schemck. ACO
Strategies for Dynamic TSP. In M.Dorrigo et al.,editor, Abstract
Proceedings of ANTS’2000, 59-62, 2000.

[11] M.Guntsch and M.Middendorf. Pheromone Modification Strategies
for Ant Algorithms Applied to Dynamic TSP. in Applications of
Evolutionary Computing, Lecture Notes in Computer Science,
Vol.2037, 213-220, 2001

[12] M.Guntsch, M.Middendorf and H.Schemck. An Ant Colony
Optimization Approach to Dynamic TSP. Proceedings of the
GECCO 2001. San Francisco, USA, 7-11 July, 2001, Morgan
Kaufmann, 860-867, 2001.

[13] G.Ausiello, E.Feuestein, S.Leonardi, L.Stougie, and M.Talamo.
Algorithms for the On-line Traveling Salesman. Algorithmica, Vol.
29, No.4, 560-581, 2001.

[14] W.Power, P.Jaillet and A.Odoni. Stochastic and Dynamic
Networks and Routing. Network Rougting, M.Ball, T.Maganti, C.
Monma and G.Namhauser(eds.). North-Holland, Amsterdam,
1995.

[15] H.N.Psaraftis. Dynamic Vehicle Routing Problems. In Vehicle
Routing: Methods and Studies, B.L.Golen and A.A.Assad(eds.),
Elsevier Science Publishers, 223-248, 1988.

http://www.eyckelhof.nl/

APPENDIX A: LOCATIONS OF CHN144

TABLE 4: LOCATIONS OF CHN144 CITIES

index x y index x y index x y index x y
1 3639 1315 37 4634 654 73 4061 2370 109 3394 2643
2 4177 2244 38 4153 426 74 4207 2533 110 3402 2912
3 3712 1399 39 4784 279 75 4029 2498 111 3360 2792
4 3569 1438 40 2846 1951 76 4201 2397 112 3101 2721
5 3757 1187 41 2831 2099 77 4139 2615 113 3402 2510
6 3493 1696 42 3007 1970 78 3766 2364 114 3439 3201
7 3904 1289 43 3054 1710 79 3777 2095 115 3792 3156
8 3488 1535 44 3086 1516 80 3780 2212 116 3468 3018
9 3791 1339 45 1828 1210 81 3896 2443 117 3526 3263

10 3506 1221 46 2562 1756 82 3888 2261 118 3142 3421
11 3374 1750 47 2716 1924 83 3594 2900 119 3356 3212
12 3376 1306 48 2061 1277 84 3796 2499 120 3012 3394
13 3237 1764 49 2291 1403 85 3678 2463 121 3130 2973
14 3326 1556 50 2751 1559 86 3676 2578 122 3044 3081
15 3188 1881 51 2788 1491 87 3478 2705 123 2935 3240
16 3089 1251 52 2012 1552 88 3789 2620 124 2765 3321
17 3258 911 53 1779 1626 89 4029 2838 125 3140 3550
18 3814 261 54 2381 1676 90 3810 2969 126 3053 3739
19 3238 1229 55 682 825 91 3862 2839 127 2545 2357
20 3646 234 56 1478 267 92 3928 3029 128 2769 2492
21 3583 864 57 1777 892 93 4167 3206 129 2284 2803
22 4172 1125 58 518 1251 94 4263 2931 130 2611 2275
23 4089 1387 59 278 890 95 4186 3037 131 2348 2652
24 4297 1218 60 1064 284 96 3486 1755 132 2577 2574
25 4020 1142 61 1332 695 97 3492 1901 133 2860 2862
26 4196 1044 62 3715 1678 98 3322 1916 134 2778 2826
27 4116 1187 63 3688 1818 99 3334 2107 135 2592 2820
28 4095 626 64 4016 1715 100 3479 2198 136 2801 2700
29 4312 790 65 4181 1574 101 3429 1908 137 2126 2896
30 4252 882 66 3896 1656 102 3587 2417 138 2401 3164
31 4403 1022 67 4087 1546 103 3318 2408 139 2370 2975
32 4685 830 68 3929 1892 104 3176 2150 140 1890 3033
33 4386 570 69 3918 2179 105 3507 2376 141 1304 2312
34 4361 73 70 4062 2220 106 3296 2217 142 1084 2313
35 4720 557 71 3751 1945 107 3229 2367 143 3538 3298
36 4643 404 72 3972 2136 108 3264 2551 144 3470 3304

The best route ever known for CHN144 is(124 123 120 126 125 118 119 114 144 143 117 115 92 93 95 94 89 91 90 83
116 110 111 87 109 113 103 107 108 112 121 122 133 134 136 128 132 127 130 41 47 40 42 104 106 99 100 105 102 85
86 88 84 78 81 75 77 74 76 73 2 70 72 69 82 80 79 68 71 63 62 66 64 65 67 23 24 31 32 37 35 36 39 34 20 18 38 28 33 29
30 26 22 27 25 7 9 5 21 17 16 19 12 10 1 3 4 8 14 11 6 96 97 101 98 15 13 43 44 51 50 46 54 49 48 52 53 45 57 61 56 60
55 59 58 142 141 140 137 129 131 135 139 138) and the length is 30353.8609965236.

