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Abstract- Dynamic optimisation problems are becoming 
increasingly important; meanwhile, progress in 
optimisation techniques and in computational resources 
are permitting the development of effective systems for 
dynamic optimisation, resulting in a need for objective 
methods to evaluate and compare different techniques. 
The search for effective techniques may be seen as a 
multi-objective problem, trading off time complexity 
against effectiveness; hence benchmarks must be able to 
compare techniques across the Pareto front, not merely 
at a single point. We propose benchmarks for the 
Dynamic Travelling Salesman Problem, adapted from 
the CHN-144 benchmark of 144 Chinese cities for the 
static Travelling Salesman Problem. We provide an 
example of the use of the benchmark, and illustrate the 
information that can be gleaned from analysis of the 
algorithm performance on the benchmarks. 

I.  INTRODUCTION 

With the evolution of computing environments from 
centralized computing through distributed computing to 
mobile computing, the confluence of Web services, peer-
to-peer systems and grid computing provide the 
foundation for Internet distributed computing and mobile 
computing – allowing applications to scale from 
proximate Ad-hoc networks to planetary-scale distributed 
systems[3]. Recently,  new features such as wire and 
wireless mixture, smartness, macro and micro-mobility, 
ultra-scalability, interoperability and invisibility have been 
added to the world of computing and communications 
[6,7]. Key research challenges they commonly face are the 
optimization of  dynamic networking, arising from 
network planning and design, load-balance routing and 
traffic management [3,14,15]. They lead to a very 
important theoretical   mathematical model: the Dynamic 
Travelling Salesman Problem (D-TSP). 
A wide variety of algorithms have been proposed for the 
dynamic TSP, such as ant algorithms[9,10,11,12], 
competitive algorithms(on-line algorithms)[13] and 
dynamic inver-over evolutionary algorithms[8], and hence 
there arises a need to evaluate and compare them. This 
comparison, however, is not straightforward. In common 
with other optimisation problems, the search for good 

algorithms is a multi-objective problem, trading off 
algorithm performance against time complexity. However, 
unlike static optimisation problems, in dynamic 
optimisation problems the performance/complexity trade-
off is not discretionary. In static optimisation problems, 
we can always wait longer for a solution. In dynamic 
optimisation problems, the trade-off between performance 
and time complexity is determined by the problem 
difficulty and the relationship between the rate of change 
and the available computing resources. So it is crucial that 
there be accurate evaluation of the performance of an 
algorithm at a given combination of problem complexity, 
and required computing resources relative to the rate of 
change. This in turn implies a need for benchmarks  which 
permit a fine-grained study of the performance 
requirements of dynamic optimisation. In this paper, we 
propose a family of such benchmarks for D-TSP, and 
demonstrate the insights which may be obtained by their 
application. 
The paper is organized as follows: we formally define the 
dynamic TSP in section 2, discuss the evaluation of 
solvers in section 3, and propose benchmarks in section 4. 
Section 5 discusses some experiments with the proposed 
benchmarks, while section 6 gives our conclusions.  

II.  DEFINING THE DYNAMIC TSP 

The well-known travelling salesman problem (TSP) may 
be formally described as follows:  
Given n cities {c1, c2, … , cn} and a cost(distance) matrix: 
 nnijdD ×= }{  (1) 

where dij is the cost(distance) from ci to cj, find a 
permutation π = (π1, π2,  . . . , πn),  such that: 

 ∑
=

=
+

n

i
ii

d
1

, min
1ππ  (2) 

where πn+1 = π1. 
Definition 1: A dynamic TSP(D-TSP) is a TSP 
determined by the dynamic cost (distance) matrix as 
follows: 
 )()()}({)( tntnij tdtD ×=  (3) 
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where dij(t) is the cost from city(node) ci to city cj, t is the 
real world time. This means that the number of cities n(t) 
and the cost matrix are time-dependent.  
But first, let us generalize the above to optimisation 
problems in general. An optimisation problem is defined 
over a space S of solutions; for any s∈ S, there is a 
corresponding objective value f(s). In a dynamic 
optimisation problem, the objective value is also a time-
dependent function, f(t,s).  
Definition 2: A dynamic optimisation problem DP is an 
optimisation problem determined by a dynamic objective 
function f(t,s), where the objective is to minimize f(t,s) for 
all values of t. 
However, this definition is just a theoretical model for 
mobile ad-hoc networking and similar applications. In 
practice, we need another approach.  
For any continuous-time dynamic optimisation problem 
DP, there is a family of related discrete-time dynamic 
problems D*P with differing time windows. Can the D*P 
problems act as tracers for the corresponding DP problem 
– in other words, are the solutions always close to the 
solutions of the corresponding problem DP?  
Formally, we may define a D*P as follows: 
Let tk, k = 0, 1, 2, … , m, t0=0 and tm= T be a sequence of 
discrete real world time sampling points.  
Definition 3: D*P is a series of optimisation problems 
determined by the objective functions f(tk,s) 
k = 0, 1, 2, …. , m-1, with time windows [tk, tk+1], where 
{ }m

ikt 0=  is a sequence of real world time sampling points. 
In particular, for the travelling salesman problem: 
Definition 4: D*-TSP is a series of TSP determined by 
the cost matrix: 
 )()()}({)(

kk tntnkijk tdtD ×=  (4) 
k = 0, 1, 2, …. , m-1, with time windows [tk, tk+1], where 
{ }m

ikt 0=  is a sequence of real world time sampling points. 
From a practical perspective, there is an additional 
constraint: the objective function f(tk,s) should change 
relatively slowly with tk; if the objective function changes 
too quickly for algorithms to track the solution, then there 
is no advantage in considering it as a dynamic 
optimisation problem. It is best treated as a sequence of 
independent static optimisation problems. 
D-TSP and D*-TSP are certainly NP-Hard problems 
(since any static TSP may be straightforwardly converted 
into a D-TSP or D*-TSP with a time-invariant cost 
matrix). 
There are many difficult open questions in the field of 
discrete-time dynamic optimization problems, because 
implicitly they involve a two-objective optimization 
problem. That is, D*P solvers should be designed as 
solutions of a two-objective optimization problem. One 
objective is to minimize the objective f(tk,s) at each time 
interval – in particular, for dynamic TSP, to minimize the 
length of the tour π = (π1, π2, … , πn(tk)): 
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where 11)( ππ =+ktn . 
The other is to minimize the size of the time interval :  
 sk = t - tk (6) 
where t ≥ tk. 
The two-objective optimization problem has a set of  
Pareto optimal solvers. Different applications and users 
impose different biases that lead to different solvers being 
chosen. That is primarily why it is difficult to evaluate an 
algorithm for a dynamic optimisation problem. A second 
difficulty for evaluating an algorithm arises because the 
exact solution of a dynamic optimisation problem is 
usually unknown – there is limited value in designing an 
algorithm for problems with a known solution. This is a 
general issue for dynamic optimisation, but it arises 
particularly for dynamic TSP because of its NP-hardness. 
In the subsequent discussion, we consider only the 
dynamic TSP. 

III.  DESIGNING AND EVALUATING SOLVERS FOR 
D*-TSP 

There are two methods for measuring the performance of 
D*-TSP solvers: 
(1) Online Performance: 
Denote the error 
 e(tk)=d(π(tk))-d(π*( tk )) (7) 
where d(π *( tk)) is the length of tour  π *( tk), which is the 
exact solution of the D*-TSP,  and π(tk) is the approximate 
tour got by the D*-TSP solver A in time interval [tk , tk+1 ]. 
 The performance of a D*-TSP solver A is defined as: 
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(2) Offline Performance: 
Denote the error 

 ))(())(()( kkk tdtdte ππ −=  (9)  

where ))( ktπ  is the best tour got by solver A without 
time restriction (we assume that algorithm A is good 
enough to solve the static TSP. The assumption is useful 
in practice for large scale TSP). Then the offline 
performance of D*-TSP solver A is defined as: 
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IV.  BENCHMARKS FOR D-TSP 

If D-TSP is implicitly a multi-objective optimization 
problem, then benchmarking of algorithms implicitly 
requires evaluation not just at one point, but along the 
Pareto front. Hence we require not just one benchmark, 



but a whole series of benchmarks trading off problem 
complexity against computational requirements.  
We propose a family of benchmarks based on the well-
known CHN144 benchmark for static TSP, which uses the 
positions of 144 Chinese cities. The positions of the 144 
cities:(xi,yi),i =1,2,...,144 as specified in [4] are appended 
to this paper. In satellite communications, as described in 
the DARPA Airborne Communications Node Project [1], 
the network routing configuration problem naturally gives 
rise to a D-TSP, in which the land-based communications 
nodes are fixed, but the satellite-based nodes are dynamic, 
their orbits being described by the equation:  
 (Xk(t)

 
- Xk)

2

 + (Yk(t)
 
- Yk)

2

 =Rk
2 

(11) 

k=1, 2,..., M(t), where (Xk(t), Xk(t)), k =1,2,...,M(t) are the 
positions of the satellites. The positions are dependent on 
the real time t, as is the number of satellites M(t). In this 
case, both the D-TSP and D

•
*-TSP are symmetric, that is 

dij (t)=dji(t). The parameters of the problems are m, M(ti) 
for t0 ( = 0), t1, t2, ..., tm (= T), Rk , and (Xk, Yk) for k = 
1,2,...,M(ti). 
In general, the above problems are highly dynamic, and 
possibly too difficult as a benchmark for the current state 
of the art in dynamic optimisation. However if M(ti)=M 
=constant and the time windows [ti,ti+1]=∆t are equal, we 
obtain a simpler version of the problem highly suited to 
benchmarking the current state of dynamic TSP. In the 
proposed benchmark, CHN144+M, there are the original 
CHN144 cities, plus M satellites. The simplest case is just 
one satellite node; we take the center of the orbit as (X1,Y1) 
= (2531,1906) and the radius is R1 = 2905 (see Fig.1). 

 
Figure 1: CHN144+1 Benchmark 

More complex (and more realistic) CHN144+M problems 
can be constructed in 3D space, using city locations 
(xi,yi,zi) satisfying:  
 (xi - x0)

2

+(yi - y0)
2

+(zi - z0)
2 

= r
2 

(12)  

where (x0,y0,z0)is the center of the earth and r is the radius. 
The orbits of the satellites become:  
 (Xk (t) - Xk)

2 

+ (Yk(t) - Yk)
2 

+ (Zk(t) - Zk)
2 

= Rk
2 

(13) 

One can adjust the parameters to meet requirements for 
different dynamics, such as the frequency, severity and 
predictability of changes [2]. In addition, there are other 
advantages of the CHN144+M: 
1. The best route ever known for CHN144 is given in the 
appendix A, and the length of the shortest route is 
30353.8609965236, which can be used as a lower bound 
of CHN144+M for evaluating the global searching ability 
of the algorithms. 
2. The dynamic behavior of the system of CHN144+M 
can be visualized easily. This is useful for examing the 
efficiency of the algorithms, as can be seen in figure 1, 
which is a screen-shot from a dynamic visualisation of 
CHN144+1. 

V.  EXPERIMENTS WITH CHN144+1 

In this section, we perform some experiments using the 
CHN144+1 problem. Our aim with these experiments is to 
understand the behaviour of the the Dynamic Inver-Over 
Evolutionary Algorithm (DIOEA) [8] in an increasingly 
dynamic environment. DIOEA is used in all experiments. 
The environment for the experiments is an Intel P4 
1.4GHz CPU with 256M RAM. We measure the offline 
error ē, together with:  
Maximum error:  
 )}({max

,,0 kmkm tee
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Minimum error: 
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Average error: 
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A. Test 1: 40 Sampling Points in a Cycle 
We start with a relatively easy test for DIOEA, in which 
the satellite orbits relatively slowly, the time for a single 
revolution (T1) ranging between 8.0s and 40.0s. The 
optimisation algorithm is updated 40 times per revolution 
(i.e ∆t ranges from 0.2s to 1.0s). Figure 2 shows the error 
curve for T1 = 8.0s, and Table 1 shows the experimental 
results. 
TABLE 1: ERROR FOR 40 SAMPLING POINTS (LESS DYNAMIC) 

T1 em er ea ē 
8.0s 3.22*104 0 6.33*102 6.33*102 

16.0s 4.37*104 0 5.89*102 5.89*102 
24.0s 3.67*104 0 6.83*102 6.83*102 
32.0s 3.55*104 0 5.48*102 5.48*102 
40.0s 3.74*104 0 6.02*102 6.02*102 

 



 
Figure 2 Error Curve for T1 = 8:0s(less dynamic) 

B. Test 2: 20 Sampling Points in a Cycle 
We now sample an increasingly dynamic environment, 
with increased change between sample points. The 
optimisation is carried out 20 times per revolution, with T1 

ranging from 4.0s to 20.0s (ie ∆t again ranges from 0.2s to 
1.0s). Figure 3 shows the error curve for T1 = 8.0s, and 
Table 2 shows the experimental results. 

 
Figure 3: Error Curve for T1 = 8:0s(dynamic) 

TABLE 2: ERRORS FOR 20 SAMPLING POINTS (DYNAMIC) 

T1 em er ea ē 
4.0s 1.87*104 0 5.07*102 5.07*102 
8.0s 1.96*104 0 5.80*102 5.80*102 

12.0s 1.41*104 0 6.39*102 6.39*102 
16.0s 1.11*104 0 5.75*102 5.75*102 
20.0s 1.56*104 0 5.88*102 5.88*102 

 

C. Test 3: 10 Sampling Points in a Cycle 
Finally, we sample a highly dynamic environment, in 
which there are only 10 sample points per revolution, and 
T1 ranges from 2.0s to 10.0s (ie ∆t again ranges from 0.2s 
to 1.0s). Figure 4 shows the error curve for T1 = 8.0s, and 
Table 3 shows the experimental results. 

 
Figure 4: Error Curve for T1 = 8:0s(highly dynamic) 

TABLE 3: ERRORS FOR 10 SAMPLING POINTS (HIGHLY 
DYNAMIC) 

T1 em er ea ē 
2.0s 1.43*104 0 6.10*102 6.10*102 
4.0s 1.32*104 0 5.20*102 5.20*102 
6.0s 1.38*104 0 5.75*102 5.75*102 
8.0s 1.87*104 0 6.77*102 6.77*102 

10.0s 1.51*104 0 7.08*102 7.08*102 
 

D. Analysis 
In each of the sets of experiments, we run the algorithm 
10 times. All results are similar, the maximum errors are 
very large, but the minimum and average errors are quite 
acceptable, with the average relative errors being about 
2%. The maximum errors all come from the beginnings of 
the runs, at time 0. That is, MIOEA has some difficulty in 
finding the optimum for the initial static TSP. However, 
once found, it can track the moving optimum in a dynamic 
TSP quite well. Paradoxically, the dynamic objective 
provides sufficient disturbance to move MIOEA away 
from the initial local optimum found, and track the global 
optimum. MIOEA actually performs better on the 
dynamic TSP than on a static TSP of equivalent 
complexity. 
Equally important, MIOEA behaves relatively well as the 
frequency and severity of change increases, with a 
relatively smooth decline in performance. 

VI.  CONCLUSIONS 

In this paper, we discussed the difficulties in providing 
benchmarks for dynamic optimisation problems, pointing 
out the implicitly multi-objective nature of the problem, 
and the concomitant requirement for a family of 
benchmarks able to compare algorithms along the Pareto 
front. We proposed one such family for the Dynamic 
Travelling Salesman Problem, the CHN144+M family of 
benchmarks, a family of problems of tunable difficulty. 
Taking one subfamily of the benchmarks, the CHN144+1 
problems, we investigated the performance of a current 
algorithm, MIOEA, varying the frequency and severity of 
change. Using the benchmarks, we were able to gain an 



understanding of the behaviour of MIOEA, both of its 
overall behaviour, and of its performance degradation 
with frequency and severity of change.  
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APPENDIX A: LOCATIONS OF CHN144 

TABLE 4: LOCATIONS OF CHN144 CITIES 

index  x y index x y index x y index x y 
1 3639  1315 37 4634  654 73 4061  2370 109 3394  2643 
2 4177  2244 38 4153  426 74 4207  2533 110 3402  2912 
3 3712  1399 39 4784  279 75 4029  2498 111 3360  2792 
4 3569  1438 40 2846  1951 76 4201  2397 112 3101  2721 
5 3757  1187 41 2831  2099 77 4139  2615 113 3402  2510 
6 3493  1696 42 3007  1970 78 3766  2364 114 3439  3201 
7 3904  1289 43 3054  1710 79 3777  2095 115 3792  3156 
8 3488  1535 44 3086  1516 80 3780  2212 116 3468  3018 
9 3791  1339 45 1828  1210 81 3896  2443 117 3526  3263 

10 3506  1221 46 2562  1756 82 3888  2261 118 3142  3421 
11 3374  1750 47 2716  1924 83 3594  2900 119 3356  3212 
12 3376  1306 48 2061  1277 84 3796  2499 120 3012  3394 
13 3237  1764 49 2291  1403 85 3678  2463 121 3130  2973 
14 3326  1556 50 2751  1559 86 3676  2578 122 3044  3081 
15 3188  1881 51 2788  1491 87 3478  2705 123 2935  3240 
16 3089  1251 52 2012  1552 88 3789  2620 124 2765  3321 
17 3258  911 53 1779  1626 89 4029  2838 125 3140  3550 
18 3814  261 54 2381  1676 90 3810  2969 126 3053  3739 
19 3238  1229 55 682  825 91 3862  2839 127 2545  2357 
20 3646  234 56 1478  267 92 3928  3029 128 2769  2492 
21 3583  864 57 1777  892 93 4167  3206 129 2284  2803 
22 4172  1125 58 518  1251 94 4263  2931 130 2611  2275 
23 4089  1387 59 278  890 95 4186  3037 131 2348  2652 
24 4297  1218 60 1064  284 96 3486  1755 132 2577  2574 
25 4020  1142 61 1332  695 97 3492  1901 133 2860  2862 
26 4196  1044 62 3715  1678 98 3322  1916 134 2778  2826 
27 4116  1187 63 3688  1818 99 3334  2107 135 2592  2820 
28 4095  626 64 4016  1715 100 3479  2198 136 2801  2700 
29 4312  790 65 4181  1574 101 3429  1908 137 2126  2896 
30 4252  882 66 3896  1656 102 3587  2417 138 2401  3164 
31 4403  1022 67 4087  1546 103 3318  2408 139 2370  2975 
32 4685  830 68 3929  1892 104 3176  2150 140 1890  3033 
33 4386  570 69 3918  2179 105 3507  2376 141 1304  2312 
34 4361  73 70 4062  2220 106 3296  2217 142 1084  2313 
35 4720  557 71 3751  1945 107 3229  2367 143 3538  3298 
36 4643  404 72 3972  2136 108 3264  2551 144 3470  3304 

 
The best route ever known for CHN144 is(124 123 120 126 125 118 119 114 144 143 117 115 92 93 95 94 89 91 90 83 
116 110 111 87 109 113 103 107 108 112 121 122 133 134 136 128 132 127 130 41 47 40 42 104 106 99 100 105 102 85 
86 88 84 78 81 75 77 74 76 73 2 70 72 69 82 80 79 68 71 63 62 66 64 65 67 23 24 31 32 37 35 36 39 34 20 18 38 28 33 29 
30 26 22 27 25 7 9 5 21 17 16 19 12 10 1 3 4 8 14 11 6 96 97 101 98 15 13 43 44 51 50 46 54 49 48 52 53 45 57 61 56 60 
55 59 58 142 141 140 137 129 131 135 139 138) and the length is 30353.8609965236. 

 




