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Abstract- This paper investigates the use of partial
functions and fitness sharing in genetic programming.
Fitness sharing is applied to populations of either
partial or total functions and the results compared.
Applications to two classes of problem are
investigated: learning multiplexer definitions, and
learning (recursive) list membership functions. In both
cases, fitness sharing approaches outperform the use
of raw fitness, by generating more accurate solutions
with the same population parameters. On the list
membership problem, variants using fitness sharing on
populations of partial functions outperform variants
using total functions, whereas populations of total
functions give the best performance on multiplexer
problems.

1 Introduction

Genetic programming, like other forms of evolutionary
computation, can suffer from premature convergence,
whereby variation is eliminated from a population before
the desired problem solution is achieved. Previous work
(McKay 2000) has demonstrated that fitness sharing,
widely used in other forms of evolutionary computation to
increase diversity and delay convergence, can lead to
better performance - measured in terms of error rate - in
genetic programming as well .

Fitness sharing was introduced by Deb and Goldberg
(1989), in a form (explicit fitness sharing) which relied on
a distance metric to define the similarity between
individuals. Similar individuals are punished for that
similarity by being required to share the raw fitness they

receive.  However there are disadvantages to this
approach, because it requires a priori definition of the
distance function, before knowledge of the shape of the
search space has been acquired.

Smith, Forrest and Perlson (1992) noted that the
requirement to define a distance metric could be avoided
in problems where the fitness of an individual is built up
from the payoff fr om discrete sub-problems. In this case,
the payoff f or a sub-problem could simply be shared
amongst the individuals which perform well on that sub-
problem. The resultant approach is known as implicit
fitness sharing. Since a high proportion of genetic
programming problems share this payoff structure,
implicit fitness sharing is very relevant.

Most work in evolutionary computation makes use of
total functions. In many cases this is a matter of simple
necessity - for example, the genome structure in standard
genetic algorithms does not support partially defined
functions ('don't care' symbols simply indicate that a
particular input value is ignored, not that the output value
is undefined for a given input). But partial functions are
rarely, if ever, used in genetic programming, where they
do have a sensible meaning. Presumably this arises from
the argument for implicit parallelism - if implicit
parallelism is a good thing, then the more of it the better;
but partial functions forego some implicit parallelism by
not attempting to solve some parts of a problem.

On the other hand, total functions are under
evolutionary pressure to solve all parts of a problem; this
pressure tends to reduce diversity, perhaps fatally so if a
critical part of an optimal solution is more diff icult to find
than equivalent parts of a local optimum.

The aim of the work begun here is to investigate the
tradeoffs between the greater implicit parallelism of total
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functions, and the potentially greater diversity provided
by partial functions, and their interaction with the
diversity-promoting mechanism of implicit fitness
sharing.

2 Details of Approach

Comparisons have been carried out on two classes of
problem: learning (recursive) list membership in a lisp-
like language, and learning boolean descriptions for 6-
and 11-multiplexers. These problems are described in
more detail below. The experiments compare the use of
implicit fitness sharing, raw fitness, and a combination of
the two. Each treatment is repeated twice, using a
population of total functions, and a population of partial
functions.

2.1 Partial Functions
In these experiments, partial functions are represented by
the use of a distinguished symbol, 'undef', which may be
inserted at any point in the program tree. When the
program is run, any function evaluation for which 'undef'
is an argument evaluates to 'undef' unless the value of the
function is independent of that argument. For example,
the boolean 'and' has the truth table shown in table 1:

and false undef true
false false false false
undef false undef undef
true false undef true

Table 1: Truth Table for Boolean and

The system has been based on Ross' (1999) innovative
DCTG-GP system. DCTG-GP was used because its
explicit representation of the syntax and semantics of the
program populations provided a simple mechanism to
specify the syntax and semantics of the 'undef' symbol.
However the grammars used simply encode the typing of
the problem space, and so the results apply not only to
grammar-guided genetic programming (Whigham 1995),
but extend to strongly typed genetic programming
(Montana 1994).

2.2 Implicit Fitness Sharing and Partial Functions
Fitness sharing aims to reduce the eagerness of
evolutionary search and encourage diversity by providing
a reward for diversity. Thus fitness sharing algorithms
typically reduce the early performance of an algorithm,
but more than compensate by delaying convergence, and
producing better asymptotic behaviour.

For populations of total functions, the implementation
of implicit fitness sharing is straightforward. The payoff
for a particular sub-problem is shared amongst all
population members which correctly answer the sub-
problem (in the problems used here, values are discrete,
so grades of correctness do not need to be considered).

With populations of partial functions, another issue
arises: if the payoffs from the sub-problems are simply
added together (assuming there are no negative payoffs),

then there is evolutionary pressure toward totality,
because even small rewards for poor predictions are better
than no reward at all . This pressure would defeat the
intention, which is to permit increased diversity through
partial functions which are free to concentrate on
particular sub-problems. Hence in this work, the shared
fitnesses are divided by the number of sub-problems
which the program attempts to solve (that is, the fitness of
an individual program is the mean of the shared rewards it
receives, averaged over all the sub-problems for which its
answer is not 'undef').

Thus the evolutionary pressure on partial functions is
toward accuracy on sub-problems. This pressure will not
necessarily result in individuals capable of solving the
whole problem. There are many possible mechanisms to
alleviate this, ensemble learning mechanisms being
particularly notable. However a very simple approach has
been taken in this paper. In addition to runs using raw
fitness throughout, and others using shared fitness
throughout, there is a third set of runs, in which the fitness
measure changes from shared fitness to raw fitness using
a fixed schedule. The particular schedule was chosen a
priori. It uses fitness sharing for the first 25% of
generations of a run, and raw fitness for the last 25%, with
a linear ramp between fitness sharing and raw fitness for
the remaining 50% of generations (the raw and shared
fitnesses are normalised to have the same mean before
being added together)

This schedule is doubtless not optimal - the optimal
schedule is almost certainly problem-dependent. But most
obvious mechanisms to optimise the schedule lead to
problems of fairness of comparison with the other two
treatments.

3 Experiments: List Membership

The search space for this experiment (derived from
Whigham 1996) is defined by the grammar in table 2 (for
total functions, the three productions leading to 'undef' are
deleted):

S -> M
M -> if EXPN EXPN M
M -> ''
M -> undef
EXPN -> atom LST
EXPN -> eq LST LST
EXPN -> member x LST
EXPN -> true
EXPN -> false
EXPN -> undef
LST -> first LST
LST -> rest LST
LST -> x
LST -> y
LST -> undef
Table 2: Grammar for List Membership



The recursive call to member allows the possibilit y of
infinite loops. To prevent this, a count of the depth of
looping was kept, and a depth greater than 20 caused the
function to return the value 'loop'; this was treated in
fitness evaluation as an incorrect (but defined) answer.

The examples for learning this function consisted of
ten true cases and ten false, and are shown in table 3:

TRUE CASES FALSE CASES
member(1 [1]) member(1 [6])
member(1 [2 1]) member(1 [3 6])
member(1 [2 3 1]) member(1 [2 3 6])
member(1 [2 3 4 1]) member(1 [2 3 4 6])
member(1 [2 3 4 5 1]) member(1 [2 3 4 5 6])
member(1 [2 3 4 5 6 1]) member(1 [2 3 4 5 6 7])
member(1 [2 3 4 5 6 7 1]) member(1 [2 3 4 5 6 7 8])
member(1 [2 3 4 5 6 7 8 1]) member(1 [2 3 4 5 6 7 8 9])
member(1 [2 3 4 5 6 7 8 9 1]) member(1 [2 3 4 5 6 7 8 9 2])
member(1 [2 3 4 5 6 7 8 9 2 1]) member(1 [2 3 4 5 6 7 8 9 2 3])

Table 3: List Membership Cases

The aim of the experiment was to find a program
which correctly computes membership. An example
solution is:

(if (eq x (first y))
    true
    (if (member x (rest y))
        true
        false))
The experimental setup used tournament selection and

half-ramped initialisation; experimental parameters are
given in table 4:

PARAMETER SPECIFICATION

Number of Runs 100
Max Generations 200
Population Size 1000
Max depth (initial pop) 8
Max depth (subsequent) 10
Tournament size 5
Crossover Probabilit y 0.9
Mutation Probabilit y 0.1
Table 4: Run Parameters (List Membership)

The raw fitness function used was the proportion of
the twenty cases correctly solved. In principle, it would be
possible for a non-recursive program to solve all twenty
cases, but not within the maximum depth imposed on the
population.

Each run was terminated at 200 generations, or earlier
if it found a correct solution to the problem.

4 Results: List Membership

The percentage of runs which terminated in a correct
solution are shown in table 5:

Total Funcs Partial Funcs
Raw Fitness 63 43
Ramped Fitness 79 84
Shared Fitness 79 88

Table 5: Percentage of 100 Runs Generating
Correct Solution

The differences between the raw fitness and other
treatments are significant at the 1% level (maximum
likelihood ratio test) for both the total and partial function
cases. The other differences are of lower significance, but
the difference between the total and partial functions,
when the ramped and shared fitness cases are aggregated
together, gives a probabilit y value of 6.5% for the null
hypothesis. To confirm this, the trials involving fitness
sharing were replicated for a further 200 runs. The results
are shown in table 6:

Total Funcs Partial Funcs
Ramped Fitness 79.3 84.7
Shared Fitness 82.7 88

Table 6: Percentage of 300 Runs Generating
Correct Solution

With a total of 300 runs, the null hypothesis for the
difference between partial and total functions has a
probabilit y value of 1.2%, when ramped and shared
fitness are considered together. Considered separately, the
null hypothesis probabiliti es are 8.8% and 6.4%
respectively. The differences between ramped and shared
fitness are of low significance, even when total and partial
results are considered together.

Figure 1 shows the percentage of runs incomplete
plotted against generation. In the legend, 'total' and
'partial' refer to populations of partial and total functions
respectively, and 'raw', 'share' and 'ramp' refer to the use
of raw fitness throughout a run, fitness sharing throughout
a run, and the ramped approach described above (to
improve readabilit y, the partial functions/raw fitness
treatment is omitted in all figures since it is of littl e
independent interest).
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Figure 1: List Membership, Runs Incomplete

Figure 2 shows the error rate of the fittest individual
plotted against generation (the first 20 generations are
omitted for clarity
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Figure 2: List Membership, Error Rate of Fittest
Individual

One interesting aspect of f igure 2 is the 2-generation
oscill ation in error rate exhibited by all fitness-sharing
treatments. On detailed examination, the populations in
many runs contain a group of individuals with low error
rate (and hence high raw fitness), and another group of
very different individuals with higher error rate, but
covering a different subset of the test cases. Small
fluctuations in the size of the second set are reflected in
larger changes in the shared fitness of its members
relative to the first set, and hence to the selection pressure
toward it, resulting in the oscill ations seen. These
fluctuations can also be seen in figure 3, which shows the
standard deviation of the number of individuals in the
population covering each test case, and hence is a proxy
measure of the phenotypic diversity of the population (if
the population is of low diversity, then some test cases
will be well covered, and others poorly, so the variance in
cover will be high).
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Figure 3: List Membership, Standard Deviation of
Cover of Test Cases

Population convergence is strongly associated with the
phenomenon of bloat (Nordin et al, 1994). If f itness
sharing acts to delay convergence, then a consequent
reduction in bloat might occur. Figure 4 shows the
average tree depth in the population (for clarity, the plot
begins at generation 20). There appears to be a small
reduction in tree depth associated with fitness sharing of
total functions, and a clear reduction with fitness sharing
of partial functions.
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Figure 4: List Membership, Average Depth of
Program Tree

5 Experiments: Multiplexers

Two sets of experiments were conducted, using the 6-
multiplexer and 11-multiplexer problems. The former
seeks a boolean expression for a multiplexer with two
address and four data lines, the latter with three address
and eight data lines. The search space for the 6-



multiplexer is defined by the grammar in table 7 (for total
functions, the productions leading to 'undef' are deleted).

EXPR → BOOL
BOOL → TERM
BOOL → and BOOL BOOL
BOOL → or BOOL BOOL
BOOL → not BOOL
BOOL → if BOOL BOOL BOOL
BOOL → undef
TERM → a0
TERM → a1
TERM → d0
TERM → d1
TERM → d2
TERM → d3
TERM → undef
Table 7: Grammar for 6-Multiplexer

The search space for the 11 multiplexer extends this by
adding TERM productions for address line a2 and data
lines d4 through d7.

The examples for learning the 6 multiplexer consisted
of the 64 possible input/output pairs - see table 8. For the
11 multiplexer, computational cost precluded evaluation
over the 2048 input/output pairs in each generation.
Instead, for each generation, 64 of these pairs were
randomly selected and used to evaluate that generation.
Since termination was based on a zero error rate for these
64 cases, it is possible that some incorrect solutions were
accepted as correct. However this possibilit y does not
affect the comparisons undertaken in this work, since all
treatments are affected equally.

Inputs Output
a0 a1 d0 d1 d2 d3
0 0 0 0 0 0 0
0 1 0 1 0 0 1
0 1 1 1 0 0 1
1 1 1 1 1 1 1

Table 8: 6 Multiplexer Input/Output Examples

The aim of the experiment was to find a boolean
function which correctly defines the multiplexer. An
example solution for the 6-multiplexer is:

(if a0 (if a1 d3 d2)
       (if a1 d1 d0))
The experimental setup used tournament selection and

half-ramped initialisation; experimental parameters are
given in table 9:

PARAMETER SPECIFICATION

Number of Runs 100
Max Generations 100 (6 multiplexer)

200 (11 multiplexer)
Population Size 500
Max depth (initial pop) 8

Max depth (subsequent) 8 (6 multiplexer)
10 (11 multiplexer)

Tournament size 5
Crossover Probabilit y 0.9
Mutation Probabilit y 0.1
Table 9: Run Parameters (Multiplexer)

Each run of the 6-multiplexer was terminated at 100
generations, or earlier if it found a correct solution to the
problem. The 11-multiplexer runs were terminated at 200
generations, or earlier on a correct solution.

As with the membership problem, three forms of
fitness evaluation were used: raw fitness, implicit fitness
sharing, and the ramped approach previously described.
Each form was evaluated both on populations of total
functions, and on populations of partial functions.

6 Results: Multiplexers

The percentage of runs which terminated in a correct
solution are shown in tables 10 and 11:

Total Funcs Partial Funcs
Raw Fitness 84 75
Ramped Fitness 100 88
Shared Fitness 100 82

Table 10: Percentage of Runs Generating Correct
Solution (6 Multiplexer)

For the 6 multiplexer, the differences between total
and partial functions are of low significance for the raw
fitness treatment, but the null hypothesis has a probabilit y
of under .001% for both ramped and shared fitness.
Similarly, the differences between raw fitness and ramped
and shared fitness are highly significant for total
functions. For partial functions, the ramped and raw
fitness treatments are significantly different (p = 1.2%),
but the other differences are of low significance.

Total Funcs Partial Funcs
Raw Fitness 17 4 (2/50)
Ramped Fitness 76 54
Shared Fitness 91 0 (0/20)

Table 11: Percentage of Runs Generating Correct
Solution (11 Multiplexer)

For the 11 multiplexer, two of the experiments are
incomplete (50 and 20 runs respectively completed so
far), but the incomplete results are suff icient that all
differences in the table, except that between raw and
shared fitness for partial functions, are significant at the
1% level.



0 20 40 60 80 100
0

20

40

60

80

100

Generation

%
 r

un
s 

in
co

m
pl

et
e

total raw    
total ramp   
total share  
partial ramp 
partial share

Figure 5: 6 Multiplexer, Runs Incomplete

Figure 5 shows the percentage of incomplete runs as a
function of generation for the 6 multiplexer. It is clear
from this figure that the partial function treatments,
especially that using shared fitness throughout are not
converged by the end of 100 runs, hence they could
eventually achieve performance closer to that obtained
using total functions. This is supported by figure 6,
showing the error rate of the best individual vs generation.
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Figure 6: 6 Multiplexer, Error Rate of Fittest
Individual

Similar conclusions may be drawn from figures 7 and
8, showing the percentage of incomplete runs, and the
error rate of the fittest individual, for the 11 multiplexer.
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Figure 7: 11 Multiplexer, Runs Incomplete
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Figure 8: 11 Multiplexer, Error Rate of Fittest
Individual

Figures 9 and 10 show the standard deviation of  cover
of the test cases for the 6- and 11-multiplexers
respectively. Again, there are strong indications of the
abilit y of f itness sharing to maintain population diversity,
especially when used with partial functions.
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Figure 9: 6 Multiplexer, Standard Deviation of
Cover of Test Cases
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Figure 10: 11 Multiplexer, Standard Deviation of
Cover of Test Cases

Figures 11 and 12 show the mean depths of individuals
for the 6- and 11-multiplexers respectively (the first 20
generations are omitted for clarity). As with the
membership problem, there is a noticeable reduction in
mean depth for populations of partial functions with
fitness sharing. The reduction is more clearly marked in
the 11-multiplexer case.
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Figure 11: 6 Multiplexer: Average Depth of
Program Tree
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Figure 12: 11 Multiplexer: Average Depth of
Program Tree

7 Conclusions

In the experiments reported here, covering two very
different types of problems, there is strong evidence of the
abilit y of f itness sharing to maintain population diversity
and delay convergence. This abilit y is enhanced when
fitness sharing is applied to populations of partial
functions rather than populations of total functions.

The delayed convergence led to considerably better
performance by approaches based on fitness sharing
(when compared with raw fitness) for all three problems
considered. This improvement occurred whether
performance was measured by percentage of runs finding
correct solutions, or by error rate at convergence.

The increased delay in convergence provided by
populations of partial functions led to significantly better
performance over 200 generations in the recursive list
membership problem, under both measures.



 For the 6 multiplexer problem, the performance of
fitness sharing on populations of total functions was so
good that further delaying convergence through the use of
partial functions could only serve to reduce performance.

In the 11 multiplexer problem, computational costs
precluded following the experiments to convergence. At
200 generations, the performance of f itness-shared
populations of total functions was better than that of
fitness-shared populations of partial functions, but the
possibilit y remains that the converged behaviour of
populations of partial functions under ramped fitness
sharing may be comparable.

There are strong indications that fitness sharing in
populations of partial functions can lead to a significant
reduction in bloat, by comparison with populations of
total functions.
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