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Abstract- This paper investigates the use of partial
functions and fitness sharing in genetic programming.
Fitness sharing is applied to populations of either
partial or total functions and the results compared.
Applications to two classes of problem are
investigated: learning multiplexer definitions, and
learning (recursive) list member ship functions. In both
cases, fitness sharing approaches outperform the use
of raw fitness, by generating more accurate solutions
with the same population parameters. On the list
member ship problem, variants using fitness sharing on
populations of partial functions outperform variants
using total functions, whereas populations of total
functions give the best performance on multiplexer
problems.

1 Introduction

Genetic programming, like other forms of evolutionary
computation, can suffer from premature nvergence,
whereby variation is eliminated from a popuation before
the desired problem solution is achieved. Previous work
(McKay 2000 has demonstrated that fithess #$aring,
widely used in ather forms of evolutionary computation to
incresse diversity and delay convergence, can lead to
better performance - measured in terms of error rate - in
genetic programming as well.

Fitness $aring was introduced by Deb and Goldberg
(1989, in aform (explicit fitness $aring) which relied on
a distance metric to define the similarity between
individuals. Similar individuals are purished for that
similarity by being required to share the raw fitnessthey
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receve. However there ae disadvantages to this
approach, because it requires a priori definition o the
distance function, before knowledge of the shape of the
seach spacehas been aaqquired.

Smith, Forrest and Perlson (1992 noted that the
requirement to define adistance metric could be asoided
in problems where the fitnessof an individual is built up
from the payoff from discrete sub-problems. In this case,
the payoff for a sub-problem could simply be shared
amongst the individuals which perform well on that sub-
problem. The resultant approach is known as implicit
fitness #aring. Since a high popation o genetic
programming poblems dare this payoff structure,
implicit fitness $aringis very relevant.

Most work in evolutionary computation makes use of
total functions. In many cases this is a matter of simple
necessty - for example, the genome structure in standard
genetic dgorithms does not suppat partially defined
functions (‘dont cae’ symbols smply indicae that a
particular input value is ignared, not that the output value
is uncefined for a given inpu). But partial functions are
rarely, if ever, used in genetic programming, where they
do have asensible meaning. Presumably this arises from
the agument for implicit paralelism - if implicit
parallelism is a goodthing, then the more of it the better;
but partial functions forego some implicit parallelism by
not attempting to solve some parts of a problem.

On the other hand, total functions are under
evolutionary presaire to solve dl parts of a problem; this
presaire tends to reduce diversity, perhaps fatally so if a
criticd part of an oggimal solution is more difficult to find
than equivalent parts of alocd optimum.

The dm of the work begun tere is to investigate the
tradeoff s between the greaer implicit parallelism of total
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functions, and the potentially greaer diversity provided
by partial functions, and their interacion with the
diversity-promoting mechanism of implicit fitness
sharing.

2 Details of Approach

Comparisons have been caried ou on two classes of
problem: leaning (reaursive) list membership in a lisp-
like language, and leaning bodean descriptions for 6-
and 1Tmultiplexers. These problems are described in
more detail below. The experiments compare the use of
implicit fitness $aring, raw fitness and a combination o
the two. Each treament is repeaed twice using a
popuation d total functions, and a popuation d partia
functions.

2.1 Partial Functions

In these experiments, partial functions are represented by
the use of a distinguished symbal, 'undef', which may be
inserted at any pdnt in the program tree When the
program is run, any function evaluation for which 'undef'
is an argument evaluates to ‘undef' unlessthe value of the
function is independent of that argument. For example,
the bodean 'and' hasthe truth table shown in table 1:

Table 1: Truth Tablefor Boolean and

The system has been based onRoss (1999 innowative
DCTG-GP system. DCTG-GP was used becaise its
explicit representation d the syntax and semantics of the
program popuations provided a simple medanism to
spedfy the syntax and semantics of the ‘undef' symbadl.
However the grammars used simply encode the typing o
the problem space and so the results apply nat only to
grammar-guided genetic programming (Whigham 1995,
but extend to strondy typed genetic programming
(Montana 1994).

2.2 Implicit Fitness Sharing and Partial Functions
Fitness &$aring ams to reduce the eaerness of
evolutionary search and encourage diversity by providing
a reward for diversity. Thus fitness $aring algorithms
typicdly reduce the ealy performance of an algorithm,
but more than compensate by delaying convergence, and
producing better asymptotic behaviour.

For popuations of total functions, the implementation
of implicit fitness $aring is draightforward. The payoff
for a particular sub-problem is dared amongst all
popuation members which corredly answer the sub-
problem (in the problems used here, values are discrete,
so grades of corrednessdo nd need to be ansidered).

With popudations of partial functions, ancother isaue
arises: if the payoffs from the sub-problems are simply
added together (asuming there ae no regative payoffs),

then there is evolutionary presaure toward totality,
becaise even small rewards for poar predictions are better
than no reward at al. This presaure would defea the
intention, which is to permit increased diversity through
partial functions which are free to concentrate on
particular sub-problems. Hence in this work, the shared
fitnesses are divided by the number of sub-problems
which the program attempts to solve (that is, the fitnessof
anindividual program isthe mean of the shared rewards it
receves, averaged ower all the sub-problems for which its
answer isnot 'undef').

Thus the evolutionary presaure on partial functions is
toward acarracy on sub-problems. This presaure will not
necessrily result in individuals cgpable of solving the
whole problem. There ae many pcssble mechanisms to
dleviate this, ensemble leaning mecdhanisms being
particularly natable. However a very simple gproach has
been taken in this paper. In addition to runs using raw
fitness throughoda, and dahers using shared fitness
throughod, there isathird set of runs, in which the fitness
measure changes from shared fitnessto raw fitnessusing
a fixed schedule. The particular schedule was chosen a
priori. It uses fitness #$aring for the first 25% of
generations of arun, and raw fitnessfor the last 25%, with
alinea ramp between fitness $aring and raw fitnessfor
the remaining 50% of generations (the raw and shared
fitnesses are normalised to have the same mean before
being added together)

This shedule is doultless nat optimal - the optimal
schedule is almost certainly problem-dependent. But most
obvious mechanisms to optimise the schedule lea to
problems of fairness of comparison with the other two
treaments.

3 Experiments: List Member ship

The seach space for this experiment (derived from
Whigham 1996 is defined by the grammar in table 2 (for
total functions, the threeproductions leading to ‘undef’ are
deleted):

S>M

M -> if EXPN EXPN M
M->"

M -> undef

EXPN -> atom LST
EXPN ->eq LST LST
EXPN -> member x LST
EXPN -> true

EXPN -> false

EXPN -> uncef

LST -> first LST

LST ->rest LST

LST ->x

LST >y

LST -> undef

Table 2: Grammar for List Member ship




The reaursive cdl to member all ows the posshility of
infinite loops. To prevent this, a count of the depth o
loopng was kept, and a depth greaer than 20 caused the
function to return the value 'loog; this was treaed in
fitnessevaluation as an incorred (but defined) answer.

The examples for learning this function consisted of
ten true cases and ten false, and are shown in table 3:

TRUE CASES FALSE CASES

member(1 [1])

member(1 [2 1])
member(1[2 3 1)
member(1[2 34 1)
member(1[23451)
member(1[234561))
member(1[234567]))
member(1[2345678]
member(1[23456789]) member(1[234567 89
member(1[234567892]1 member(1[234567 89 2]3

member(1 [6])

member(1 [3 €])
member(1[2 3 §)
member(1[2 3 4 §)
member(1[2345 §)
member(1[234567)
member(1[2345679
member(1[2345678D

Table 3: List Member ship Cases

The dm of the experiment was to find a program
which corredly computes membership. An example
solutionis:

(if (eqg x (first y))

true

(if (menber x (rest y))
true
fal se))

The experimental setup used tournament seledion and
half-ramped initialisation; experimental parameters are
given in table 4:

PARAMETER SPECIFICATION
Number of Runs 100

Max Generations 200

Popuation Size 1000

Max depth (initial pop) 8
Max depth (subsequent) 10

Tournament size 5
Crossver Probability 0.9
Mutation Probabilit y 0.1

Table 4: Run Parameters (List Membership)

The raw fitness function wsed was the propation o
the twenty cases corredly solved. In principle, it would be
possble for a nonreaursive program to solve dl twenty
cases, but not within the maximum depth impased onthe
popuation.

Eadh run was terminated at 200 generations, or ealier
if it founda oorred solution to the problem.

4 Results: List Membership

The percentage of runs which terminated in a @rred
solution are shown in table 5:

Total Funcs Partial Funcs
Raw Fitness

Ramped Fitness
Shared Fitness

Table5: Percentage of 100 Runs Generating
Correct Solution

The differences between the raw fitness and aher
treaments are significant at the 1% level (maximum
likelihoodratio test) for both the total and pertial function
cases. The other differences are of lower significance but
the difference between the total and partial functions,
when the ramped and shared fitness cases are aygregated
together, gives a probability value of 6.5% for the null
hypahesis. To confirm this, the trials invalving fitness
sharing were replicated for a further 200 runs. The results
are shown in table 6:

Total Funcs Partial Funcs

Ramped Fitness
Shared Fitness

Table 6: Percentage of 300 Runs Generating
Correct Solution

With a total of 300 runs, the null hypahesis for the
difference between partial and total functions has a
probability value of 1.2%, when ramped and shared
fitnessare mnsidered together. Considered separately, the
null hypahesis probabilities are 8.8% and 64%
respedively. The diff erences between ramped and shared
fitnessare of low significance, even when total and partial
results are mnsidered together.

Figure 1 shows the percentage of runs incomplete
plotted against generation. In the legend, 'total' and
'‘partial’ refer to popuations of partia and total functions
respedively, and 'raw', 'share’ and 'ramp' refer to the use
of raw fitnessthroughou arun, fithess $iaring throughou
a run, and the ramped approach described above (to
improve realability, the partial functions/raw fitness
treament is omitted in al figures snce it is of little
independent interest).
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Figure 1. List Member ship, Runs|Incomplete

Figure 2 shows the eror rate of the fittest individual
plotted against generation (the first 20 generations are
omitted for clarity
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Figure2: List Member ship, Error Rate of Fittest
Individual

One interesting asped of figure 2 is the 2-generation
oscillation in error rate exhibited by al fitnesssharing
treaments. On detailed examination, the popuations in
many runs contain a group d individuals with low error
rate (and hence high raw fitnesg, and ancther group d
very different individuals with higher error rate, but
covering a different subset of the test cases. Small
fluctuations in the size of the second set are refleded in
larger changes in the shared fitness of its members
relative to the first set, and henceto the seledion presaire
toward it, resulting in the oscillations sen. These
fluctuations can also be seen in figure 3, which shows the
standard deviation o the number of individuals in the
popuation covering ead test case, and henceis a proxy
measure of the phenaotypic diversity of the popuation (if
the popuation is of low diversity, then some test cases
will be well covered, and ahers poarly, so the variancein
cover will be high).
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Figure 3: List Member ship, Standard Deviation of
Cover of Test Cases

Popuation convergenceis frondy associated with the
phenomenon d bloat (Nordin et al, 1994. If fitness
sharing ads to delay conwvergence, then a mnsequent
reduction in bloat might occur. Figure 4 shows the
average tree depth in the popuation (for clarity, the plot
begins at generation 20. There gpeas to be a small
reduction in tree depth asoociated with fitness $aring o
total functions, and a dea reduction with fitness $iaring
of partial functions.
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Figure4: List Member ship, Average Depth of
Program Tree

5 Experiments: Multiplexers

Two sets of experiments were mnduwcted, using the 6-
multiplexer and 1Xmultiplexer problems. The former
seeks a bodean expresson for a multiplexer with two
address and four data lines, the latter with three aldress
and eight data lines. The seach space for the 6-



multi plexer is defined by the grammar in table 7 (for total
functions, the productions leading to 'undef' are del eted).

EXPR - BOOL

BOOL - TERM

BOOL - andBOOL BOOL
BOOL - or BOOL BOOL
BOOL - not BOOL

BOOL - if BOOL BOOL BOOL
BOOL - undef

TERM - a0

TERM - al

TERM - dO

TERM - di1

TERM - d2

TERM - d3

TERM - undef

Table 7: Grammar for 6-Multiplexer

The seach spacefor the 11 multi plexer extends this by
adding TERM prodictions for addressline & and data
lines d4 through d7

The examples for leaning the 6 multiplexer consisted
of the 64 pasble inpu/output pairs - seetable 8. For the
11 muilti plexer, computational cost preduded evaluation
over the 2048 inpu/output pairs in ead generation.
Instead, for ead generation, 64 o these pairs were
randomly seleded and wsed to evaluate that generation.
Sincetermination was based ona ze&o error rate for these
64 cases, it is possble that some incorred solutions were
acceted as corred. However this possbility does not
affed the comparisons undertaken in this work, since dl
treaments are dfeded equally.

0 0 0 0 0 0 0
0 1 0 1 0 0 1
0 1 1 1 0 0 1
1 1 1 1 1 1 1

Table 8: 6 Multiplexer Input/Output Examples

The am of the experiment was to find a bodean
function which corredly defines the multiplexer. An

example solution for the 6-multi plexer is:
(if a0 (if al d3 d2)
(if al di do))

The experimental setup wsed tournament seledion and
half-ramped initialisation; experimental parameters are
givenintable9:

PARAMETER

SPECIFICATION

Number of Runs 100

Max Generations 100(6 multi plexer)
200 (11 multi plexer)

Popuation Size 500

Max depth (initial pop) 8

Max depth (subsequent) 8 (6 multi plexer)
10 (11 multi plexer)

Tournament size 5

Crossover Probability 0.9

Mutation Probability 0.1

Table 9: Run Parameters (Multiplexer)

Each run o the 6-multiplexer was terminated at 100
generations, or ealier if it founda rred solution to the
problem. The 11-multiplexer runs were terminated at 200
generations, or ealier ona crred solution.

As with the membership problem, three forms of
fitness evaluation were used: raw fitness implicit fitness
sharing, and the ramped approach previously described.
Each form was evaluated bah on poplations of total
functions, and on poplations of partia functions.

6 Results: Multiplexers
The percentage of runs which terminated in a @rred

solution are shown in tables10and 11

Total Funcs Partial Funcs

Raw Fitness

Ramped Fitness
Shared Fitness

Table 10: Percentage of Runs Generating Correct
Solution (6 Multiplexer)

For the 6 multiplexer, the differences between total
and pertial functions are of low significance for the raw
fitnesstreament, but the null hypathesis has a probability
of under .001% for both ramped and shared fitness
Similarly, the diff erences between raw fitnessand ramped
and shared fitness are highly significant for total
functions. For partial functions, the ramped and raw
fitness treaments are significantly different (p = 1.2%),
but the other diff erences are of low significance.

Total Funcs Partial Funcs

Raw Fitness 17 4 (2/50)
Ramped Fitness {8 54
Shared Fitness 91 0 (0/20)

Table 11: Percentage of Runs Generating Correct
Solution (11 Multiplexer)

For the 11 multiplexer, two of the experiments are
incomplete (50 and 20 runs respedively completed so
far), but the incomplete results are sufficient that all
differences in the table, except that between raw and
shared fitness for partial functions, are significant at the
1% level.
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Figure5: 6 Multiplexer, RunsIncomplete

Figure 5 shows the percentage of incomplete runs as a
function d generation for the 6 multiplexer. It is clea
from this figure that the partial function treaments,
espedally that using shared fitness throughou are not
converged by the end o 100 runs, hence they could
eventually adchieve performance doser to that obtained
using total functions. This is suppated by figure 6,
showing the eror rate of the best individual vs generation.
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Figure 6: 6 Multiplexer, Error Rate of Fittest
Individual

Similar conclusions may be drawn from figures 7 and
8, showing the percentage of incomplete runs, and the
error rate of thefittest individual, for the 11 multi plexer.
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Figure8: 11 Multiplexer, Error Rate of Fittest
Individual

Figures 9 and 10show the standard deviation of cover
of the test cases for the 6- and 1Imultiplexers
respedively. Again, there ae strong indicaions of the
ability of fitness $aring to maintain popuation dversity,
espedally when used with pertial functions.
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Figures 11 and 12show the mean depths of individuals
for the 6- and 1Xmultiplexers respedively (the first 20
generations are omitted for clarity). As with the
membership problem, there is a naticeale reduction in
mean depth for popuations of partial functions with
fitness $aring. The reduction is more dealy marked in
the 11-multi plexer case.
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Figure 11: 6 Multiplexer: Average Depth of
Program Tree
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Figure 12: 11 Multiplexer: Average Depth of
Program Tree

7 Conclusions

In the eperiments reported here, covering two very
different types of problems, thereis grongevidence of the
ability of fitness $iaring to maintain popdation dversity
and delay convergence This ability is enhanced when
fitness éaring is applied to popuations of partia
functions rather than popudations of total functions.

The delayed conwvergence led to considerably better
performance by approaches based on fithess #aring
(when compared with raw fitnesg for al three problems
considered. This improvement occurred whether
performance was measured by percentage of runs finding
corred solutions, or by error rate & convergence

The increased delay in convergence provided by
popuations of partial functions led to significantly better
performance over 200 generations in the reaursive list
membership problem, under both measures.



For the 6 multiplexer problem, the performance of
fitness $aring on poplations of total functions was ©
goodthat further delaying convergence throughthe use of
partia functions could ony serve to reduce performance

In the 11 multiplexer problem, computational costs
preduded following the experiments to convergence. At
200 ¢enerations, the performance of fitnessshared
popuations of total functions was better than that of
fitnessshared popuations of partia functions, but the
possbhility remains that the cnwverged behaviour of
popuations of partial functions under ramped fitness
sharing may be comparable.

There ae strong indicaions that fitness $aring in
popuations of partial functions can lead to a significant
reduction in boat, by comparison with popuations of
total functions.
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