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Abstract – In this paper we experiment TAG3P on the even parity 
problems in order to investigate the robustness of tree-adjunct 
grammar guided genetic programming [3] (TAG3P) on the 
problems classified as “finding a needle in a haystack” [9].  We 
compare the result with grammar guided genetic programming 
[15] (GGGP) and genetic programming [7] (GP). The results 
show that TAG3P does not work well on the problems due to the 
nature of the search space and the structure of the solution. 

Keywords: Genetic Programming, Grammar – Guided Genetic 
Programming, Tree Adjunct Grammars, Even-Parity Problem. 

I. Introduction 

Tree adjunct grammar guided genetic programming [3] 
(TAG3P) is a grammar guided genetic programming 
system that uses tree adjunct grammars along with context 
free grammars as means to set bias for the evolutionary 
process. In [4], we showed that TAG3P outperforms 
significantly GGGP and GP on the symbolic regression 
problem whereby the target functions and the search space 
are suitable for the promotion of building blocks. In this 
paper, we experiment TAG3P on the even parity problem 
of which the nature of search space is like a needle in a 
haystack that makes it difficult to solve with any 
progressive search techniques [9]. The result is then 
compared to GGGP and GP on the same problem with 
similar settings on parameters. The organization of the 
remainder of the paper is as follow. In section 2, we give 
some basic concepts of GP, GGGP, TAG3P, and the 
concepts of building blocks. Section 3 describes the even 
parity problem. Section 4 contains our experimental setups. 
The results will be given and discussed in section 5. Section 6 
concludes the paper and discusses future work. 

II. Backgrounds 

In this section, we briefly overview some basic 
components and operations of the three different genetic 
programming systems, namely, canonical genetic 
programming [2] (GP), grammar guided genetic 
programming [15] (GGGP), tree adjunct grammar guided 
genetic programming [3] (TAG3P) and the concept of 
building blocks. 

I.1. Genetic Programming 
Genetic programming (GP) can be classified as an 

evolutionary algorithm, in which computer programs are 

the evolutionary targets. An early definition, model, 
techniques and problems of genetic programming can be 
found in [7]. For a good survey of genetic programming, 
[1] is recommended. A basic genetic programming system 
consists of five basic components [7]: representation for 
programs (called genome structure), a procedure to 
initialize a population of programs, a fitness to evaluate the 
performance of the program, genetic operators, and 
parameters. In [7], the structure of programs is the 
structured tree of S-expressions; fitness of a program is 
evaluated by its performance; main genetic operators are 
reproduction, crossover, and mutation. Reproduction 
means some programs are copied to the next generation 
based on their fitness, crossover can be carried out 
between two tree-based programs by swapping two of their 
sub-trees,1 and a tree-based program can be mutated by 
replacing one of its sub-trees by a randomly generated tree.   
Parameters are population size, maximum number of 
generations and probabilities for genetic operators. The 
evolutionary process is as follows. At the beginning, a 
population of tree-based programs is randomly generated. 
Then, the new population is created by applying genetic 
operators to the individuals chosen from the existing 
population based on their fitness.  This process is repeated 
until the desired criteria are satisfied or the number of 
generations exceeds the maximum number of generation. 
GP has been used successfully in generating computer 
programs for solving a number of problems in a wide 
range of areas [7]. 

II.2 Grammar Guided Genetic Programming   
Grammar guided genetic programming systems are 

genetic programming systems that use grammars to set 
syntactical constraints on programs. The use of grammars 
also helps these genetic programming systems to 
overcome the closure requirement in canonical genetic 
programming, which cannot always be fulfilled [7].    

 Using grammars to set syntactical constraints was first 
introduced by Whigham [15] where context-free grammars 
were used. We shall refer Whigham’s system as GGGP for 
the rest of the paper. Basically, GGGP has the same 
components and operations as in GP; however, there are a 
number of significant differences between the two 
systems. In GGGP, a program is represented as its 
derivation tree in the context free grammar. Crossover 

                                                 
1  The ideas of using tree-based representation of chromosomes and 
swapping sub-trees as crossover operator was first introduced in [2].   
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between two programs can only be carried out by 
swapping their two sub-derivation trees that start with the 
inner nodes labelled by the same non-terminal symbol in 
the grammar. In mutation, a sub-derivation tree is replaced 
by a randomly generated sub-derivation tree that is derived 
from the same non-terminal symbol. GGGP demonstrated 
positive results on the 6-multiplexer problem and 
subsequently on a wide range of other problems. 

II. 3 Tree Adjunct Grammar Guided Genetic Programming  
Tree adjunct grammar guided genetic programming [3] 

(TAG3P) uses tree adjunct grammars along with context 
free grammars to set syntactical constraints as well as 
search bias for the evolution of programs.  In this 
subsection we will first give the basic concepts of tree 
adjunct grammars then the basic components of TAG3P. 

II.3.1 Tree Adjunct Grammars  

Tree-adjunct grammars are tree-rewriting systems, 
defined in [5] as follows: 

Definition 1: a tree-adjunct grammar comprises of 5-
tuple (T, V, I, A, S), where T is a finite set of terminal 
symbols; V is a finite set of non-terminal symbols (T ∩ V 
= ∅); S ∈ V is a distinguished symbol called the start 
symbol. I is a set of trees called initial trees. An initial tree 
is defined as follows: the root node is S; all interior nodes 
are labelled by non-terminal symbols; each node on the 
frontier is labelled by a terminal symbol. A is a finite set of 
trees called auxiliary trees, which can be defined as 
follows: internal nodes are labelled by non-terminal 
symbols; a node on the frontier is labelled by a terminal or 
non-terminal symbol; there is a special non-terminal node 
on the frontier called the foot node. The foot node must be 
labelled by the same (non-terminal) symbol as the root 
node of the tree. We will follow the convention in [6] to 
mark the foot node with an asterisk (*). 

The trees in E= I ∪ A are called elementary trees. Initial 
trees and auxiliary trees are denoted α and β respectively; 
and a node labelled by a non-terminal (resp. terminal) 
symbol is sometime called a non-terminal (resp. terminal) 
node. An elementary tree is called X-type if its root is 
labelled by the non-terminal symbol X.  

The key operation used with tree-adjunct grammars is 
the adjunction of trees.  Adjunction can build a new 
(derived) tree γ from an auxiliary tree β and a tree α 
(initial, auxiliary or derived). If a tree α has a non-terminal 
node labelled A, and β is an A-type tree then the 
adjunction of β into α to produce γ is as follows. Firstly, 
the sub-tree α1 rooted at A is temporarily disconnected 
from α. Next, β is attached to α to replace this sub-tree. 
Finally, α1 is attached back to the foot node of β. γ is the 
final derived tree achieved from this process. Adjunction is 
illustrated in Figure 1. 

The tree set of a TAG can be defined as follows [5]: 
      TG = {all tree t / t is completed and t is derived from 

some initial trees} 
A tree t is completed, if t is an initial tree or all of the 

leaf nodes of t are non-terminal nodes; and a tree t is said 

to be derived from a TAG G if and only if t results from an 
adjunction sequence (the derivation sequence) of the form: 
α β1(a1) β2(a2)... βn(an) , where n is an arbitrary integer,  α , 
βi (i=1,2..n) are initial and auxiliary trees of G and ai 
(i=1,2..n) are node address where adjunctions take place. 
An adjunction sequence may be denoted as (*).  The 
language LG generated by a TAG is then defined as the set 
of yields of all trees in TG. 

        LG = {w ∈ T* / w is the yield of some tree t ∈ TG} 
The set of languages generated by TAGs (called TAL) 

is a superset of context-free languages; and is properly 
included in indexed languages [6]. More properties of 
TAL can be found in [6]. One special class of tree-adjunct 
grammars (TAGs) is lexicalized tree-adjunct grammars 
(LTAG) where each elementary tree of a LTAG must have 
at least one terminal node. It has been proved that for any 
context-free grammar G, there exists a LTAG Glex that 
generates the same language and tree set with G (Glex is 
then said to strongly lexicalize G) [6]. 
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Fig.1 Adjunction. 

II.3.2 Tree Adjunct Grammar Guided Genetic 
Programming 

In [3], we proposed a grammar guided genetic 
programming system called TAG3P, which uses a pairs 
consisting of a context-free grammar G and its 
corresponding LTAG Glex to guide the evolutionary 
process. The main idea of TAG3P is to evolve the 
derivation sequence in Glex (genotype) rather than evolve 
the derivation tree in G as in [15]. Therefore, it creates a 
genotype-to-phenotype map. As in GP [7], TAG3P 
comprises of the following five main components: 

Program representation: a modified version of the 
linear derivation sequence (*), but the adjoining address of 
the tree βi is in the tree βi-1. Thus, the genome structure in 
TAG3P is linear and length-variant. Although the language 
and the tree set generated by LTAGs with the modified 
derivation sequence is yet to be determined, we have found 
pairs of G and Glex conforming to that derivation form for 
a number of standard problems in genetic programming  
[4].   

Initialization procedure: a procedure for initializing a 
population is given in [3]. To initialize an individual, 
TAG3P starts with selecting a length at random; next, it 
picks up randomly an α tree of Glex then a random 



sequence of β trees and adjoining addresses. It has been 
proved that this procedure can always generate legal 
genomes of arbitrary and finite lengths [3]. 

Fitness Evaluation: the same as in canonical genetic 
programming [3]. 

Genetic operators:  in [3], we proposed two types of 
crossover operators, namely one-point and two-point 
crossover, and three mutation operators, which are 
replacement, insertion and deletion. The crossover 
operators in TAG3P are similar to those in genetic 
algorithms; however, the crossover point(s) is chosen 
carefully so that only legal genomes are produced.  In 
replacement, a gene is picked up at random and the 
adjoining address of that gene is replaced by another 
adjoining address (adjoining address replacement); or, the 
gene itself is replaced by a compatible gene (gene 
replacement) so that the resultant genome is still valid. In 
insertion and deletion, a gene is inserted into or deleted 
from the genome respectively. With these carefully 
designed operators, TAG3P is guaranteed to produce only 
legal genomes. Selection in TAG3P is similar to canonical 
genetic programming and other grammar-guided genetic 
programming systems. Currently, reproduction is not 
employed by TAG3P. 

Parameters: minimum length of genomes, 
MIN_LENGTH, maximum length of genomes 
MAX_LENGTH, size of population - POP_SIZE, 
maximum number of generations – MAX_GEN and 
probabilities for genetic operators. 

 Some analysis of the advantages of TAG3P can be 
found in [3, 4].  

II.4 Other Grammar Guided Genetic Programming Systems  
Wong and Leung [16] used logic grammars to combine 

inductive logic programming and genetic programming. 
They have succeeded in incorporating domain knowledge 
into logic grammars to guide the evolutionary process of 
logic programs.  

Ryan and his co-workers [14] proposed a system called 
grammatical evolution (GE), which can evolve programs 
in any language, provided that this language can be 
described by a context-free grammar. Their system differs 
from Whigham’s system in that it does not evolve 
derivation trees directly. Instead, genomes in GE are 
binary strings representing eight-bit numbers; each number 
is used to make the choice of the production rule for the 
non-terminal symbol being processed. GE has been shown 
to outperform canonical GP on a number of problems [14]. 

II.4 Building Blocks in Genetic Programming Systems 
GP building blocks are low order and compact schemas 

that is above the average observed performance and expected 
of appearing at an exponential rates in future generation [11].  
In [11] the GP hypothesis building blocks was stated as the 
combination of the low order, compact, and highly fit 
schemata to make even better schemata. To date there has 
been several ways of defining building blocks (or schemata) 
in genetic programming systems [12]. In [4], we propose the 

concept of building blocks for TAG3P as trunks of beta trees 
in the chromosome. TAG3P has been proved to work very 
efficiently in combining and replicating building blocks [4].  

III. Even Parity Problems 

The even parity problem is the symbolic regression 
problem on boolean domain where the target function is 
the even-n-parity function. The even-n-parity function is 
the boolean function of n binary variables; it returns true 
when the number of 1-input bits is even and return false 
otherwise.  

In the literature, this function is believed to be the 
hardest boolean function to learn because the solutions are 
very sparse in the search space and they become 
exponentially sparser when n is increased [7, 9].  

The grammar G and the tree adjunct grammar Glex for 
the problem is as follow: 

G=(T, V, P, {EXP}) where T={X1, X2,.., Xn, AND, OR, 
NAND, NOR}, V={EXP, OP, VAR}, and P={EXP→EXP 
OP EXP, OP→AND, OP→OR, OP→NAND, OP→NOR, 
EXP→VAR, VAR→X1, VAR→X2,..., VAR→Xn}. 

Glex= (T,V, I, A, {EXP}) where T and V are the same as 
in G; I and A are shown in Figure 2. 
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 Fig. 2 Elementary trees for Glex with i=1,..,n. 

IV. Experimental Design 

We experiment TAG3P and GGGP on the even parity 
problems with the number of input variables are 3, 4, and 
5. The results for GP on these problems are taken from [7]. 
Table 1 summarises our experiment setups. We tried to set 
the parameters as same as in [7] to provide a fair basis for 
comparison. 

V. Results and Discussions 

For each problem, we conducted 100 runs (50 for 
TAG3P and 50 for GGGP). For GP, we used the 
results in [7]. The overall results are summarised in 
table 2. Although the probability of success for GP 
on even-5-parity problem was not given in [7], in [8] 
Koza stated that, on average, GP needs up to 



6,528,000 processed individuals to yield a solution 
with a probability of 99%. We experiment GP on the 
even-5-parity problem and the number of solutions 
found were zero. The cumulative frequencies of GGP 
and TAG3P on the even-3and 4-parity problems are 
depicted in Figure 3 and 4.  

Objective Induce the even-n-parity 
function from its data. 

Terminal Operands X1, X2,..., Xn 
Terminal Operators AND, OR, NAND, NOR 
Fitness Cases 2n cases of the function. 
Raw fitness The number of correct 

classification 
Standardized 
Fitness 

The number of misclassification. 

Hits Same as raw fitness 
Genetic Operators Tournament selection, crossover, 

and mutation. 
Parameters Population size= 4000, crossover 

rate=0.9, mutation rate=0.1, 
tournament size=3, number of 
generations=50.  

Success predicate An individual scores 2n hits  

Table1. The experiment setup. 

 Even-3 Even-4 Even-5 
TAG3P 26 (52 %) 0 (0%) 0 (0%) 
GGGP 45 (90 %) 16 (38%) 0 (0%) 
GP 50 (100 %) 24 (48 %) 0 (0%) 

Table2. The probability of success for three systems on even-3, 4, 
and 5-parity problems. 

The results show that TAG3P is not comparable to 
GGGP and GP on the problems. Even for the unsuccessful 
runs, the average standardized fitness of the best 
individuals in GGGP is smaller than in TAG3P. 

One of the possible explanations for the poor 
performance of TAG3P on the problems is that the nature 
of the search space is not suitable for the promotion of 
building blocks in TAG3P. In [9], the search space of the 
problem was analysed; the solutions are very sparse. It is 
like a needle in a haystack and not suitable for progressive 
search techniques. The more a system near to random 
search the better it can cope with the problems.  

Moreover, in [16], it is known that the solutions in an 
even-n-parity problem have a recursive structure. For 
example, if EXP is the solution of an even-n-parity 
problem then AND (OR (Xn+1, EXP), NAND (Xn+1, EXP)) 
is the solution for the even-n+1-parity problem. Therefore, 
the number of operators (and the length) of the solution in 
even-n+1-parity problem should be more than twice of that 
in the even-n-parity problem2. In addition, the standardised 
fitness of EXP in the even-n+1-parity problem is only 2n/2, 
which is highly unfit.  

                                                 
2 In our experiments and [7], the length of the solutions was always very 
long, e.g. it was more than or equal to 20 operators for even-3-parity 
problem.  

Consequently, a genetic programming system needs to 
preserve and combine the long and unfit blocks of code in 
order to induce the even-n-parity function. In that sense it 
is contrary to the building blocks hypothesis.  

In TAG3P the blocks of codes are the trunks of beta 
trees adjoined together. Since they are unfit, they will die 
out quickly in the course of evolution. Even when some 
survive and combine to make a longer trunk of beta trees 
the probability of being destroyed by crossover and 
mutation later will be bigger. In contrast, GP and GGGP 
seem to be better than TAG3P in preserving these unfit 
blocks of codes because they define the blocks of codes as 
sub-trees.  

Aware of that problems, some approaches to packing 
and reuse the code have been proposed such as automatic 
define functions (ADF) [7, 8], auto defining module [13] 
to name but a few. It is interesting to see TAG3P with 
similar approach in the future.   

 
Fig. 3 Cumulative frequencies of TAG3P and GGGP on the 

even-3-parity problem. 

 

Fig. 4 Cumulative Frequencies of TAG3P and GGGP on the 
even-4-parity problem. 



VI. Conclusion and Future Work 

In this paper, we experiment TAG3P on the even parity 
problems and compare with GGGP and GP. The result 
show that TAG3P does not work well on the problems due 
to the nature of the search space and the structure of the 
solution, which requires the preservation and combination 
of unfit blocks of codes.  

In future, we will investigate further the effects of 
genetic operators in TAG3P on the problem. As mentioned 
in the previous section, a mechanism of automatic finding, 
packing and reusing the blocks of codes for TAG3P will 
be studied.     
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