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Abstract- In this paper, we investigate the roles of
insertion and deltion as mutation operators and local
search operators in Tree Adjoining Grammar Guided
Genetic Programming (TAG3P) system [13]. The results
show that, on three standard problems, these operators
are better than the sub-tree mutation originally used in
[13, 14]. Moreover, insetion and deltion can act as local
search operators and help TAG3P to solve problems with
only small population sizes. 

I.  INTRODUCTION
Tree adjoining grammar guided genetic programming

(TAG3P) [13, 14] (some of its only forms were presented in
[11, 12]) is a genetic programming system that uses tree
adjoining grammars (TAG) as the formalisms to dictate its
language bias. We argued in [13] that one of the advantages
of using TAG-based representation is the ‘feasibility’
(described in section 2) in TAG derivation trees, which
allows us to design many types of operators [13]. Among
those operators, insertion and deletion arise naturally as
structural mutation operstors. In a recent work [15], we have
shown how TAG-based representation coupled with insetion
and deletion can soften significantly the inherent structural
search difficulty in genetic programming [5, 6].  

In this paper, we empirically investigate the use of
insertion and deltion operators in the context of tree
adjoining grammar guided genetic programming (TAG3P)
and compared to the results to TAG3P using subtree
mutation opertors as in [13, 14].

The paper is, therefore, organized as follows. In section
2 we brief reinstroduce the concepts of tree adjoining
grammars and TAG3P as well as insertion and deltion
operators. The experiments to investigate the roles of
insertion and deletion in TAG3P will be presented and
discussed in section 3. Section 4 concludes the paper and
highlight some future work.

II.  TAG-BASED REPRESENTATION FOR GP 
In this section, we first give the definitions of tree

adjoining grammars (TAGs) and their derivation trees.
Then, we describe how TAG-derivation trees can be used
for genetic programming as in [13]. 
II. 1     Tree Adjoining Grammars

Joshi and his colleagues in [8] proposed tree-adjunct
grammars, the original form of tree adjoining grammars
(TAG). Adjunction was the only tree-rewriting operation.

Later, the substitution operation was added and the new
formalism became known as TAG. Although the addition of
substitution did not change the strong and weak generative
power of tree adjunct grammars (their tree and string sets), it
compacted the formalism with fewer elementary trees [9]. 

TAGs are tree-rewriting systems, defined in [9] as a 5-
tuple (T, V, I, A, S), where T is a finite set of terminal
symbols; V is a finite set of non-terminal symbols (T  V =
); S  V is a distinguished symbol called the start
symbol; and E = I  A is a set of elementary trees (initial
and auxiliary respectively). In an elementary tree, interior
nodes are labeled by non-terminal symbols, while nodes on
the frontier are labeled either by terminal or non-terminal
symbols. The frontier of an auxiliary tree must contain a
distinguished node, the foot node, labeled by the same non-
terminal as the root. The convention in [9] of marking the
foot node with an asterisk (*) is followed here. With the
exception of the foot node, all non-terminal symbols on the
frontier of an elementary tree are terminal or marked as 
for substitution. Initial and auxiliary trees are denoted  and
 respectively. A tree whose root is labeled by X is called
an X-type tree. Figure 1 shows some examples of initial
and auxiliary trees.

The key operations used with tree-adjoining grammars are
the adjunction and substitution of trees. Adjunction builds a
new (derived) tree  from an auxiliary tree  and a tree 
(initial, auxiliary or derived). If tree  has an interior node
labeled A, and  is an A-type tree, the adjunction of 
into  to produce  is as follows: Firstly, the sub-tree 1

rooted at A is temporarily disconnected from . Next,  is
attached to  to replace the sub-tree. Finally, 1 is attached
back to the foot node of .  is the final derived tree
achieved from this process. Adjunction is illustrated in
Figure 2.
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Figure 1.  Some examples of initial and auxiliary trees.

                     
Fig.ure2.  Adjunction.

In substitution, a non-terminal node on the frontier of an
elementary tree is substituted with another initial tree with a
root labelled with the same non-terminal symbol.
Substitution is illustrated in Figure 3.

The tree set of a TAG can be defined as follows [9]:
TG = {all tree t: t is completed and t is derived from some
initial S-trees through adjunctions and substitutions}.

Where a tree t is completed, if t is an initial tree and all of
the leaf nodes of t are labelled by terminal symbols. The
language generated by the TAG G is defined as 

 LG = {w  T*: w is the yield of some tree t  TG}.
In TAG, there is a distinction between derivation and

derived trees. A derivation tree in TAG [9, 17, 20, 21] is a
tree-structure, which encodes the history of derivation
(substitutions and adjunctions) to produce the derived tree.
Each node is labelled by an elementary tree name: the root
must be labelled by an  tree name, and the other nodes with
either an  or  tree. The links between a node and its
offspring are marked by addresses for adjunctions and
substitutions. Figure 4 illustrates the derivation and derived
trees in TAGs (the discontinuous lines mean substitutions).
                                                                                              

                
Figure 3. Substitution.

                         
Figure 4.  Examples of a derivation tree and derived tree in TAGs.

The set of languages generated by TAGs (called TAL) is a
superset of the context-free languages generated by CFGs;
and is properly included in indexed languages [9]. More
properties of TAL can be found in [9].

One special class of TAGs is lexicalized TAGs (LTAGs)
[9], in which each elementary tree of an LTAG must have at
least one terminal node. It has been proven that there is an
algorithm which, for any context-free grammar G, generates
a corresponding LTAG Glex that generates the same language
and tree set as G (Glex is then said to strongly lexicalize G)
[9].  The derivation trees in G are the derived trees of Glex.
II.2 Tree Adjoining Grammar Guided Genetic Programming
(TAG3P)

The algorithm in [9, 18, 19] to find an LTAG to strongly
lexicalize a CFG is based on the ideas of separation between

the recursive part (structure) and non-recursive part
(lexicon) of the CFG. In [9, 18, 19], the only operation
necessary in the resultant LTAG is adjunction. However,
substitution can be added to make the elementary set more
compact [9]. Moreover, it is possible to encode the non-
recursive parts of the grammar purely as substitution trees.
In so doing, the initial tree used for substitution cannot be
adjoined by other auxiliary trees: a process that simplifies
the structure of derivation trees in LTAGs while maintaining
their generative powers. Consequently, on the structure of
LTAG derivation trees, substitution becomes an in-node
operation and can be ignored to simplify the discussion of
this paper (in fact, one can choose to entirely ignore
substitution in implementing a TAG-based representation, at
the cost of increasing the number of elementary trees).
Figure 5 depicts this type of LTAG derivation tree
(supposing each elementary tree has two adjoining
addresses – i.e. the maximum arity is 2).

Figure 5.  Derivation tree structure for TAG-based representation. The 
squares means there is no tree adjoining to that address (a NULL node).

In TAG3P [13, 14], the derivation tree in LTAG was
used as genotype structure. TAG3P uses a genotype-to
-phenotype map and can handle problems with context-
sensitive syntactical constraints, context-free syntactical
constraints, or (as in standard GP) no syntactical constraints.
In the first case, an LTAG grammar Glex is used on its own
as the formalism for language bias declaration. The
phenotype is the derived tree of Glex. In the second case, the
context-free grammar (CFG) G is used to generate the
strongly lexicalised LTAG Glex. The derivation tress of Glex
is used as the genotype, and the phenotype in that case is the
derivation tree of G (derived tree of Glex). In the final case,
from a description of a GP set of functions and terminals, a
context-free grammar, G, is created according to [22] (page
130). It was proven in [22] that there is a one to one map
between the derivation trees of G and the expression trees in
GP. The mapping schema can be summarized in figure 6 as
follows where the second phase of the map is optional. 

Figure 6. Schema for Genotype-to-Phenotype map in TAG-based 
Representation.

Other components of TAG3P are as follows [13]:
Parameters: minimum size of genomes (MIN_SIZE),

maximum size of genomes (MAX_SIZE), size of population
(POP_SIZE), maximum number of generations
(MAX_GEN) and probabilities for genetic operators.

Initialization procedure: Each individual is generated by
randomly growing a derivation tree in Glex to a size
randomly chosen between MIN_SIZE and MAX_SIZE
(unlike most GP systems, which use depth bounds). Because
of TAG feasibility, this always generates valid individuals of
exact size. An alternative ramped half-and-half initialization



generates half of the derivation trees randomly but of full
shape. 

Fitness Evaluation: an individual derivation is first
mapped to the derived CFG tree. The expression defined by 
the derived tree is then semantically evaluated as in grammar 
guided  genetic  programming  (GGGP)  [22],  or  translated 
further into the parse tree and then be evaluated  as in GP [4, 
10].

Main Genetic operators: sub-tree crossover and sub-tree
mutation. 

In sub-tree crossover, two individuals are selected based
on their fitness. Points with the same adjunction label are
randomly selected within each tree and the two sub-trees are
exchanged. If no such points are found, the two individuals
are discarded and the process is repeated until a bound is
exceeded.

In sub-tree mutation, a point in the derivation tree is
chosen at random and the sub-tree rooted at that point is
replaced by a newly generated sub-derivation tree.
II.3 Insertion and Deletion Operators   

The derivation tree structure in LTAG has an important
property: when growing it, one can stop at any time, and the
derivation tree and the corresponding derived tree are still
valid. In other words, the derivation tree in LTAG is a non-
fix-arity tree structure (Catalan tree). The maximal arity
(number of children) of a node is the number of adjoining
addresses that are present in the elementary tree of that
node. If this arity is n, the node can have 0, 1,..., or n
children. 

In [13], this property was called feasibility. Feasibility
allows us to design and implement many other new search
operators in TAG3P which would not be possible in
standard GP and other GGGP systems [4, 7, 10, 16, 22-24],
including bio-inspired ones [13]. In particular, insertion and
deletion operators arise naturally from this TAG-based
representation. In insertion, a random NULL node in the
LTAG-derivation tree is replace by a new node that can
adjoin to the adjoining address of the corresponding parent
node. Conversely, deletion randomly deletes a node that has
all NULL children in the LTAG-derivation tree (i.e. a leaf
node). Insertion and deletion simulate the growth and
shrinkage of a natural tree. The change in genotype structure
(and consequently in phenotype structure) is small. Figure 7
illustrates how insertion and deletion work.

Fig.ure 7. Examples of insertion (on the left) and deletion (on the right).

Recently, we have shown that TAG-based representation
coupled with insertion/deletion operators can help to soften
significantly the structural search difficulty in GP [15].
Moreover, since compared to sub-tree mutation, insertion
and deletion operators make relatively small change to the
genotype in TAG3P (although the change in the phenotype
fitness might be large), it is natural to raise the question of
the use of these operators as mutation operators for TAG3P
or local search operators in hybrid with genetic search in
TAG3P system. 

III.  EXPERIMENTS AND RESULTS
In order to investigate the potential roles of insertion and

deletion operators in TAG3P, we tried them on three
problems, namely, 6-multiplexer, symbolic regression, and
digital circuit synthesis.

In the 6-multiplexer problem [10], a 6-multiplexer uses
two address lines to output one of four data lines and the
task is to learn this function from its 64 possible fitness
cases using function set F={IF, AND, OR, NOT} and
terminal set {a0, a1, d0, d1, d2, d3}. In the symbolic
regression problem [10], the task is to learn the quadtic
function: X4+X3+X2+X from 20 sample points in [-1..1]; the
function and terminal set are F={+,-,*,/,sin, cos, exp, rlog}
and T={X}. They were chosen as frequently-used GP test-
beds. In the last problem, the task is to synthesize digital
combinatorial circuits from its input-output description
using 1-line control multiplexers as basic building blocks
[1-3]. As argued in [1], the use of only 1-line control
multiplexer as the basic building block help manufacturers
reduce the producing cost since they can produce only one
basic gate (1-line multiplexer) in a (possible) massive scale.
In [1-3], two types of 1-line control multiplexers were used,
namely, class A and class B. However, in terms of
generative power, one class is enough and therefore will be
assumed in this paper (class A). It is also noted that, when
only one class is used, the problem, in effect, is equivalent
to the problem of inducing Boolean decision trees. The
Boolean target function used in the experiment of this paper
is the function in example 2 in [1-3], where the function has
four input, one out put, empty dc-det, and on-set as
{0,4,5,6,7,8,9,10,15}.

III.1 Experiment Design
To investigate the roles of insertion and deletion as

mutation operators, for each problem, we use three sets of
runs. On the first, we run TAG3P with sub-tree crossover
and sub-tree mutation (base runs) (POP500CS); In the
second, we run TAG3P with sub-tree crossover as the sole
genetic operator (POP500CO). In the last, we run TAG3P
with sub-tree crossover and insertion/deletion as mutation
operators (POP500ID). The aim is to separate out the effect
of using different mutation operators from the power of
crossover alone. The POP_SIZE and MAX_GEN were 500
and 51 respectively in all sets of runs.

To investigate the roles of insertion and deletion as local
search operators hybridizing with sub-tree crossover and
sub-tree mutation in TAG3P, we designed two sets of runs.
In the first, the POP_SIZE and MAX_GEN were 50 and 51
respectively, while the number of local search steps was 10.
In effect, each run will have the same maximum number of
fitness evaluations with one of POP500CS (or POP500CO,
POP500ID). To find out whether the hybridization with
genetic operators really works, we further divide this set of
runs into two. Operators was turned on (POP50ON) in one
set of runs and off in the other (POP50OFF). Similarly, on
the second set of runs, the POP_SIZE and MAX_GEN were
10 and 51, while the number of local search steps was 50.
We also designed POP10ON and POP10OFF set of runs
with similar meaning with the first set of runs. The purpose
of using two different population sizes is to investigate the
trade-off between decreasing population size and increasing
the number of local search steps. In all runs, the local search
strategy was stochastic hill-climbing; and Lamarckian’s
inheritance was used (i.e. whenever a local search find a



better individual in the neighborhood of an individual in the
population, this individual is replaced by the new better
individual). 

For the sake of completion, for each problem, we also
allocated a set of runs using purely stochastic hill-climbing
(TAG-HILL) on TAG-based representation (i.e. no
population and/or genetic operator were used). For each run
with TAG-HILL, the maximum number of search steps was
25500 to make the maximum number of fitness evaluation s
the same with other sets of runs above.

For each setting described above, 100 runs were allocated.
For each problem, a random search (TAG-RAND) with
sample size of 2550000 (i.e. the maximum number of fitness
evaluations is equivalent to 100 runs in each setting) was
also conducted. That makes the total of runs were 2700.

When they are used, the crossover and mutation rates were
always set as 0.9 and 0.1; the MAX_SIZE were set as 40 for
the 6-multiplexer and digital circuit design problems, and 20
for the symbolic regression problem.

The grammars G and Glex for symbolic regression and 6-
multiplexer were the same as in [13, 14], while G and Glex
for digital circuit design problem is as follows.

G={V={B, ATT}, T={c0,c1,c2,c3,0,1}, P,{B}}where the
rule set P is defined as follows:

B  B ATT B.
B  0 | 1
ATT  c0 |c1 | c2 |c3
Glex={V={B, TL, ATT}, T={c0,c1,c2,c3,0,1}, I, A}, where

I  A is depicted in Figure 8. TL and ATT are lexicons that
can be substituted by one lexeme in {0,1} and in
{c0,c1,c2,c3} respectively. 

Figure 8. Elementary trees for Glex in the digital circuit design problem.

III. 2 Results and Discussion
The results over 2700 runs for all three problems are

presented in in tables 1, 2, and 3. The cumulative
frequencies of the sets of runs that, at least, found a solution
are depicted in Figure 9,10, 11 respectively.

The results show that, on all three problems, the
combination of sub-tree crossover and insertion/deletion as
mutation operators (POP500ID) turn out to be the best. For
6-multiplexer and digital circuit desgin problems, it
outperformed statistically significantly (with =0.5%)
POP500CS and POP500CO. For symbolic regresion,
POP500ID was just slightly better (not statistical
significance). That result can be explained by the power of
sub-tree crossover operator on TAG-representation for that
problem (with proportion of success of POP500CO was 95
%). Those results also suggest that, sub-tree mutation, which
have been using in TAG3P since [13], is perhaps too
disruptive. 

On the investigation into the use of insertion/deletion as
local search operators, the results show that POP50ON/OFF
and POP10ON/OFF significantly better than POP500CS and
POP500ID on the 6-multiplexer problem (with a statistical
confidence level of 95%), while much worse on symbolic
regression and digital circuit design problems. The results of

TAG-HILL and POP500CO give an explanation for that.
For 6-multiplexer problem, the landscape seems to be
smoother for insertion/deletion operators than sub-tree
crossover, while it is converse in the case of symbolic
repgression and digital circuit design problems. 

The results of TAG-HILL compared to POP500ID
(especially on the 6-multiplexer problem) suggest that (even
for problems that crossover alone performs badly) it is still
essential to use it as well as the use of population (what we
need is a suitable mutation operators).  

The outperformance of POP50ON, POP10ON over
POP50OFF, POP50ON indicate the usefulness of
hybridization between genetic operators and local search
using insertion/deletion. Furthermore, the supperior
performance of POP50ON, POP10ON over POP500CS and
POP500CO on the 6-multiplexer problem highlight that
when the fitness landscape is smooth for insertion/deletion,
they can be used efficiently as local search operators. The
similar performance of POP50ON and POP10ON on that
problem also indicate that we might be able to use small
popultation size (and therefore save memory storage), to a
certain extend, with an expense of increasing the length of
local search to solve the problem reliably.

TABLE I. RESULTS ON THE 6-MULTIPLEXER.

Setting Proportion of Successs (%)
POP500CS 38
POP500CO 32
POP500ID 89
POP50ON 78
POP50OFF 59
POP10ON 75
POP10OFF 72
TAG-HILL 61

TAG-RAND 1 in 2550000 samples

TABLE I I. RESULTS ON THE SYMBOLIC REGRESSION.

Setting Proportion of Successs (%)
POP500CS 95
POP500CO 97
POP500ID 98
POP50ON 75
POP50OFF 16
POP10ON 74
POP10OFF 16
TAG-HILL 3

TAG-RAND 7 in 2550000 samples

TABLE I I. RESULTS ON THE DIGITAL CIRCUIT DESIGN.

Setting Proportion of Successs (%)
POP500CS 70
POP500CO 84
POP500ID 91
POP50ON 34
POP50OFF 0
POP10ON 17
POP10OFF 0
TAG-HILL 0

TAG-RAND 0 in 2550000 samples



Fig.ure 9. Cumulative Frequencies on the 6-multiplexer problem.

Fig.ure 10. Cumulative Frequencies on the symbolic regression problem.

Fig.ure 11. Cumulative Frequencies on the digital circuit design problem.

IV. CONCLUSION
In this paper, we have reintroduced TAG-based

representation. The insertion and deletion operators, which
arise naturally from the representation was described in
details. The investigation into the two possible roles of
insertion/deletion in TAG3P was conducted and compared
with TAG3P using sub-tree mutation operator.

The results suggest that, on the problems tried,
insertion/deletion can be best used as mutation opreators
regardless whether the fitness landscape is smooth for them
or not. When the fitness landscape is smooth for

insertion/deletion, they can potentially be used as local
search operators in a hybridization with other genetic
operators to archieve reliable performance even with very
small population sizes.

In future, we are planning to invetigate the combination of
insertion/deletion with other genetic oparater described in
[13]. We are also developing a way to qualtify the
smoothness of fitness landscape using insertion/deletion.
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