


Abstract— In this paper, we investigate the use of some wel-
known randomized low-discrepancy sequences (Halton, Sobol,
and Faure sequences) for initialising particle swarms. We
experimented with the standard global-best particle swarm
algorithm for function optimisation on some benchmark
problems, using randomized low-discrepancy sequences for
initialisation, and the results were compared with the same
particle swarm algorithm using uniform initialisation with a
pseudo-random generator. The results show that, the former
initialisation method could help the particle swarm algorithm
improve its performance over the latter on the problems tried.
Furthermore the comparisons also indicate that the use of
different randomized low-discrepancy sequences in the
initialisation phase could bring different effects on the
performance of PSO.

I. INTRODUCTION

lmost all evolutionary algorithms (EAs) proposed so
far employ some sorts of random decision making.

However computers cannot provide truly random numbers.
Consequently, like many randomized algorithms, most EAs
use pseudo-random number generators for their random
decision making. Similarly, for the implementation of Monte
Carlo Methods on computers, pseudo-random generators
have been used to simulate the uniform distribution [6]. The
performance of the Monte Carlo Methods is known to be
heavily dependant on the quality of the pseudo-random
generators. Likewise, several studies in evolutionary
computation (EC) have suggested that the use of different
pseudo-random generators can have significant effects on
performance [5, 7, 15, 16].

A

However, it is reported in the Monte Carlo Methods
literature that pseudo-random number generators cannot
achieve optimal discrepancy (i.e. small deviation from the
uniform distribution) [17, 19]. Consequently, researchers
have studied alternative ways to generate low-discrepancy
sequences for stratified sampling in Monte Carlo Methods.
The best-known low-discrepancy sequences are
deterministic (known as ‘quasi-random’), and can achieve
near-optimal discrepancy. Some famous such sequences
include Halton, Sobol, Faure, Niederreiter sequences [10,
19]. The class of Monte-Carlo Methods using low-
discrepancy sequences for stratified sampling is now known
as ‘Quasi Monte Carlo Methods’.

Inspired by this transition from Monte Carlo Methods to
Quasi Monte Carlo Methods, it is interesting to see whether

Nguyen Quang Uy, Nguyen Xuan Hoai, and Pham Minh Tuan are with
the NC research group, Department of IT, Military Technical Academy, 100
Hoang Quoc Viet St., Hanoi, Vietnam (corresponding author’s e-mail:
hoainx@lqdtu.edu.vn).

R.I. McKay is with the Structural Complexity Laboratory, Seoul
National University, Korea (e-mail: rim@cse.snu.ac.kr).

This is a self-archived copy of the accepted paper, self-archived under
IEEE policy. The authoritative, published version can be found at
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4631221&tag=1

low-discrepancy sequences (in particular their scrambled/-
randomized versions) are useful for EAs. To the best of our
knowledge, there has only been a very limited of number of
studies in the EA literature addressing this issue: [4, 13, 20,
21].

In this paper, we investigate the use of three randomized
low-discrepancy sequences (Halton, Faure, Sobol sequences)
for initialising particle swarms [8], a new emerging nature-
inspired metae heuristic technique in the field of EAs and
Swarm Intelligence. The standard global-best particle swarm
algorithm [9] for function optimisation using randomized
low-discrepancy sequences was applied to some benchmark
problems, and the results were compared with the same
particle swarm algorithm using the more common uniform
initialisation (with a pseudo-random generator). The paper
is organized as follows. In the next section, we give a brief
introduction to some related work in the literature. Section 3
contains some background on pseudo-random generators,
low-discrepancy sequences, and the version of particle
swarm we used for the experiments presented in section 4.
The paper concludes with section 5, where some future
proposals for extending the work in this paper are put
forward.

II.RELATED WORK
Our work is much inspired by [13], where the randomized

Halton sequence was used to generate stratified (uniform)
samples for a real-coded GAs. In that work, Kimura and
Matsumura showed that the real-coded GA could benefit
from low discrepancy sequences as a more uniform (than
pseuro-random generators) way of initialising the GA
population. They discovered that the performance of the
real-coded GA using randomized Halton sequence is
superior to the performance of the same GA using a pseudo-
random generator for population generation. Our work
extends this approach to the field of particle swarm
optimization, where we are not aware of any similar
preceding work.

Particle Swarm Optimization (PSO) [9] is a newly
emerging computational methodology in natural
computation. A PSO algorithm maintains a swarm of
particles, where each particle represents a potential solution.
This swarm of particles ‘flows’ in the multi-dimensional
solution space according to some physical or nature based
rules (such as the rules observed in the behaviour of a flock
of birds) [9]. Iterations between particles through some
mechanisms of individual and social learning help to attract
the particle swarm towards the areas of optimal solutions.
Since it was first introduced in [8, 12], PSO has quickly
become a promising and on-going area of research in natural
computation, with many applications and extensions [9, 11,
24].

Initialising PSO with Randomized Low-Discrepancy Sequences:
 The Comparative Results

Nguyen Quang Uy, Nguyen Xuan Hoai, RI McKay, and Pham Minh Tuan

One of the important components in a particle swarm
algorithm is the initialisation of particle positions. It is
suggested that the performance of PSO is heavily dependent
on the initial positions of the particles [9]. Moreover, in the
absence of knowledge about the search/solution space, it is
desirable that the particles are initialised as widely spread in
the search/solution space as possible [9]. Consequently, there
have been a number of attempts to propose different
methods for PSO initialisation. In the first implementations
of PSO, the particles were initialised uniformly at random
(assuming the use of pseudo-random generators). This
initialisation strategy became the most popular strategy in
PSO subsequently [9].

In [20] and [4], Sobol and Faure low-discrepancy
sequences were employed to initialise the swarm of
particles. We are unsure of the details, as there is limited
discussion of the details for the implementation. In
particular, it is not clear to us whether they used
deterministic or randomised low-discrepancy sequences, as
the references they cited did not contain implementations of
scrambled (randomized) Sobol and Faure sequences.
Randomization of low-discrepancy sequences is important if
they are to be used for multi-start (or multiple run) random
(heuristic) search algorithms. The underlying algorithms
generate deterministic point sequences designed to fill up the
search space (usually the unit cube). Thus in their raw form,
repeated runs will result in the same output.

To the best of our knowledge, there has been no previous
detailed investigation of the effect of randomized low-
discrepancy sequences on the performance of PSO, except
our preliminary work [18]. In [18], we did some experiments
on using the randomized Halton sequence for initialising
PSO and compared the performance with the PSO initialised
by a pseudo-random generator. The results were less
convincingstatistically weak due to the huge variations in
performance of different runs, which was a direct
consequence of our experimentals settings. This paper
extends that preliminary work by changing the experiment
setting (discussed in Section 4) and implements new PSO
initialisation methods by using two more randomized low-
discrepancy sequences (i.e Sobol and Faure sequences).

Low-discrepancy uniform initialisation of PSO, is not the
only strand of work on improved initialisation for PSO. In
[21], Parsopoulos and Vrahatis used the nonlinear simplex
method to initialise PSO. The particles are then moved
towards better solutions by local search. So this method of
initialisation is based on the exploitation of the search space
to start with good solutions. In [23], an initial particle is
placed at the centre of the search space, and from there the
rest of the particles are spread over the search space through
clustering of the search space. This initialisation method
could, however, be relatively biased, as many benchmark
objective functions for PSO have optima at the centre of the
search space., so that performance on benchmark functions
could be difficult to transfer to real-world functions.

III. BACKGROUNDS
In this section, we first give a brief summary of pseudo-

random generation and low-discrepancy sequences,
emphasising the randomized low-discrepancy sequences
which we use in our PSO initialisation.
A.Random Number Generation

Modern computers are deterministic in nature. Therefore,
it seems perverse to ask a computer to generate random
number. Nevertheless, random numbers are essential for
randomized algorithms, an important class of problem-
solving methodologies using random decision making in
their processes. The quality of random numbers (i.e how
truly random they are) is crucial to almost all randomized
computation methods, such as Monte Carlo Methods and
EAs, as evidenced in the literature [5, 7, 9, 15, 16]. One of
the measures for the quality of pseudo-random generators is
uniformity. Uniformity is usually evaluated by the
discrepancy (i.e. the deviation from the true uniform
distribution). For a point set P={x1,x2,...,xN} in [0..1]s the
(star) discrepancy of P is computed as [19, 25]:

∫ ⎥⎦

⎤
⎢⎣

⎡
−=

s
duJV

N
PJAPT N

NN]1,0[

2
*)(),()(

where u=(u1,u2,..us), J is the hyper-rectangle defined by
[0..ui] (i=1,2...,s), A(J,PN) is the number of points inside J,
and V(J) is the volume of J. For other tests of the goodness
of a pseudo-random generators, we recommend [14] as a
good and complete source of references.

There are two main streams of algorithms for generating
pseudo-random numbers, namely, the linear congruential
method and the feedback shift register method [10, 14]. Of
the two, the linear congruential method is far more popular.
Therefore in this work, we choose the linear congruential
method to generate pseudo-random numbers. The most
popular and widely used linear congruential pseudo-random
generators are based on the Lehmer generator (or Lehmer
sequence). The form of the generator is:

xi=(axi+c) mod m; 0 xi<m
In practice, c is usually set as 0, and the resultant pseudo-

random generators are called multiplicative congruential
generators. The quality of that kind of pseudo-random
generators is very much dependent on the choices of a and m
[10, 14]. The implementation of a multiplicative
congruential pseudo-random generator in this paper is taken
from [22], as it has been used and tested for quite some time
both by our selves and the wider research community.
B.Low-Discrepancy Sequences

In [17], it was shown that uniform pseudo-random number
sequences have discrepancy of order (log(log(N)))1/2 and
thus do not achieve the lowest possible discrepancy.
Subsequently, researchers have proposed an alternative way
of generating ‘quasi-random’ numbers through the use of
low discrepancy sequences. Low discrepancy sequences are
designed to be deterministic (less random than pseudo-
random numbers) but more uniform (stratified) than pseudo-
random numbers. Their discrepancies have been shown to be

optimal, of order (log(N))s/N [10, 14, 25]. A number of such
quasi-random sequences have been proposed: Halton, Sobol,
Faure, and Niederreiter, to name but a few. They have been
extensively used in generating stratified samples for Quasi-
Monte Carlo Methods.

In this paper, we use the randomized Halton, Sobol, and
Faure sequences. The randomizedation (scrambleds)
versions of these sequences are based on [1-3, 10, 25].
Furthermore, the randomization, proven to preserve
discrepancy [25], supports multiple runs (multi-start) of
randomized algorithms/heuristics (such as PSO), which in
turn facilitates comparison with pseudo-random numbers.

B.1. The Randomized Halton Sequence
The Halton sequence is an extension of the van der Corput

sequence (from 1 dimension to n dimensions). The van der
Corput sequence in base b is a one dimensional low
discrepancy sequence defined as follows [10, 25]:

For an integer b  2, we set Zb={0, 1, ...b-1} then every
integer n  0 has a unique digit expansion in base b as:

j
m

j
jban ∑

=

=
0

where aj  Zb for j  0, and m = logbn. We define
b(n) as the radical inverse function in base b for every b 
2 as:

∑
=

+
=

m

j
j
j

b b
a

n
0

1)(φ

The Van de Corput sequence Sb={t0,t1,...} in base b is then
defined as: tn = b(n).

The van de Corput sequence is a low discrepancy
sequence in one dimensional space. In order to generate
quasi-random numbers in multi-dimensional space, some
extensions are needed. One of the extensions of the van de
Corput sequence is the Halton sequence [10, 25], defined in
the s-dimensional space as follows:

xn=(b1(n),b2(n), ..., bs(n))
where b1, b2, ..., bs are integers that are greater than one and
pair-wise co-prime. In practice (and in our implementation),
the bases are usually chosen as the first s primes.

As with other low-discrepancy sequences, the Halton
sequence is deterministic. Thus it is not appropriate for our
purpose in undertaking multiple runs (multiple starts) of
PSO and comparing them with PSO using pseudo-random
numbers for initialisation. Therefore, in this paper, we use
the randomized Halton sequence. The randomization is
created by adding Gaussian noises (with a mean of zero in
mean and standard deviation of 0.05 in this paper) to each
coordinates of the sequence points1.

B.2. The Randomized Faure Sequence
The Faure sequence [2, 10] is a permutation of the Halton

sequence. Unlike the Halton sequence, it uses the same base
for each dimension. The base m is the smallest prime

1 We also trieddid use the form of randomization proposed in [25], and
the results of for PSO was were similar on all the problem tried in this
paper. We have done some experiments and the standard deviation of 0.05
seems to be the best choice for all the problems tried.

number that is greater than or equal to the number of
dimensions in the problem and not smaller than 2. Denote
the kth point by

()1 2, , ,k dZ c c c≡ ⋯
The first component C1 is the one-dimensional Halton

sequence m(1), m(2), To generate Faure sequences,
follow the following procedure.

If Cn=b0
m-1+b1

m-2+...+ br
m-(r+1) then

 Cn-1=a0
m-1+a1

m-2+...+ar
m-(r+1)

where

mod
r i

j iji j

b a m
≥

⎛ ⎞≡ ⎜ ⎟
⎝ ⎠

∑
.

The randomization of the Faure sequence is then created
done in the same way with as for the randomized Halton
sequence.

B.3. The Randomized Sobol Sequence

The construction of the Sobol sequence [1, 3, 6, 10] uses
linear recurrence relations over the finite field, F2, where F2

= {0 1}. Let the binary expansion of the non-negative
integer n be given by n= n120+ n221+….+nw2w-1 . Then the the
nth element of the jth dimension of the Sobol sequence, xn

(j) ,
can be generated by:
x

n(j)=n1v1(j)⊕n2v2(j)⊕⊕nw vw(j)

where vj
(j) is a binary fraction called the ith direction number

in the jth dimension. These direction numbers are generated
by the following q-term recurrence relation:
v

i(j)=a1v
i−1(j)⊕ a2 v

i−2(j)⊕⊕ aq v
i−q+1(j)⊕ vi−q(j)⊕(v

i−q(j) /2
q)

We have i>q, and the bit, ai, comes from the coefficients of a
degree-q primitive polynomial over F2. Different primitive
polynomials are used to generate the Sobol direction
numbers in each different dimension.

In the same wayAs with Faure and Halton sequences, we
obtain randomized Sobol sequence by adding some small
random noises to their coordinates.
C.The Global-best PSO

Since the introduction of PSO, there have been a number
of extensions and variations to the standard algorithm.
However, to demonstrate the effects of using randomized
low discrepancy sequences for initialisation, we chose the
most basic and standard version of PSO, namely the global-
best (glbest) PSO [9]. We believe that our methods could be
readily extended to variants of the basic PSO algorithm. The
glbest PSO is as follows [9] (page 95):
1. Initialise a swarm of particles (points) in the n-

dimensional space.
2. Repeat

For each particle i=1,....S.ns do
// Set the personal best position
 if f(S.xi)<f(S.yi) then
 S.yi=S.xi
 end
//Set the global-best position

 if f(S.yi) < f(S.y*) then
 S.y*=S.yi

 end
 end
 For each particle i=1,..., S.ns do
 Update the velocity of particle i;
 Update the position of particle i;
 end
 Until stopping criteria are met
where S.ns is the number of particles in the swarm, xi is

the current position of particle i, yi is the best (measured by
the objective function f) position that the particle i visited in
the past, and y* is the global-best position so far of the
whole swarm. The value in dimension j of the velocity of
particle i, vij, is updated in time sequence t as follows:

vij(t+1)= vij(t) + c1rij(t)[yij(t)-xij(t)] + c2r2j(t)[y*j(t)-xij(t)]
where xij(t) is the position of particle i in dimension j at

time t, c1 and c2 are two positive acceleration constants used
for scaling, and r1j and r2j are uniform random values in the
range [0,1]. The position of a particle i, xi(t+1) is updated as
follows:

xi(t+1) = xi(t) + vi(t+1)

IV. EXPERIMENTS AND RESULTS
To investigate the effect on performance of using different

randomized low-discrepancy sequences for PSO
initialisation, and to compare with uniform initialisation
(using a pseudo-random generator), we implemented four
versions of the glbest PSO algorithm given in the previous
section, and applied them to some benchmark problems of
continuous function optimization. In the first version (called
U-PSO), the swarm particles in the first step are generated in
uniform random manner using a pseudo-random generator.
In the other three versions, the randomized Halton sequence
(H-PSO), randomized Faure sequence (F-PSO), and
randomized Sobol sequence (S-PSO) are used to generate
the initial swarm. Otherwise, all four algorithms are
identical. All algorithms use the same pseudo-random
generator except in the first step.
D.The Test Functions

We chose the following benchmark continuous functions
in n-dimensional space for optimization using U-PSO and
SH-PSO:

f1: Spherical function:

]100,100[,)(
1

2 −∈=∑
=

j

n

j
j xxxf

f2: Hyper-elipsoid function:

]10,10[)(
1

22 −∈=∑
=

j

n

j
j xxjxf

f3: Ackley function:

,2020)(
)2cos(112.0

11
2

eeexf
n

j j
n

j x
n

xj
n ++

∑
−

∑
−= ==

− π

xj  [-30, 30]
f4: Griewank function:

]300,300[,cos
4000
11)(

11

2 −∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= ∏∑

==
j

n

j

j
n

j
j x

j

x
xxf

f5: Rastrigin function:

]10,10[,10)2cos(10()(
1

2 −∈+−=∑
=

jj

n

j
j xxxxf π

f6: Rosenbrock function:

]5,5[,])1()(100[)(
2/

1

2
12

22
122 −∈−+−=∑

=
−− j

n

j
jjj xxxxxf

 For all of these functions, the optimal value is 0.
E.Experiment Settings

To investigate the effects of using different swarm sizes
and numbers of generations for the comparison between
PSO using uniform initialisation (U-PSO) and PSO using
randomized low discrepancy sequences for initialisation, for
each system, we ran three sets of experiments. The
experiments used a fixed budget of a maximumal 100000
function evaluations. The swarm sizes (numbers of particles
– S.ns) in these three sets of runs were 50, 100, and 200, so
that the maximal numbers of generations were 2000, 1000,
and 500 respectively. For each of the test function, we set the
number of dimensions to 10, 20, 30, and 40. For each
combination of swarm size (number of generation), test
function (from f1 to f6), and search dimension, 100 runs were
allocated to each of the two algorithms, making a total of
28800 runs in all. To avoid the problems of huge
performance variation due to some runs gettings trapped in
local optima, reported in our preliminary work [18], we
distinguish two set of runs: “successful” and “unsuccessful”
runs. A run is defined as “successful” if it could finds a
solution with function value lower than a threshold (10-3 in
these experiments), when such a solution is found, the run
terminates and the number of function evaluations (or
number of generation) so far is recorded. Those runs that are
not “successful” are defined as “unsuccessful”. We use the
“successful” runs to estimate the rate of finding global
optima by different algorithms and use the number of
function evaluations to evaluate how fast they approach the
optima (speed of convergence). For the “unsuccessful” runs
we compare the quality of the best solutions they found until
generation 100000th.
F. Results and Discussions

The detailed results are presented in Tables 1, 2 and 3
overleaf. From the results in the Tables we could can see that
the different initialisation methods could can result in
different overall the PSO performances. The best
performances in a row are highlighted by using the boldface
formattype.

The results clearly show that, regardless of chosen
objective functions (column F), particles sizes, search space
dimension (column Dim), S-PSO (PSO initialised with the
randomized Sobol sequence) was the best among all the four
algorithms. S-PSO consistently had bigger a higher rate of
success (i.e it more often found the solutions that have
function value smaller than the threshold before 100000

function evaluations - indicated in column SUC). Moreover,
it found optimal solutions with much less number offewer
function evaluations (i.e it converged faster – indicated in
column EVAL). Even when S-PSO failed to find the optima
after 100000 number of function evaluations, the quality of
the solutions it found were much higher than U-PSO, H-
PSO, and F-PSO in the same situation (column FIT). In
almost all of these cases, the superior performance of S-PSO
against each of other three algorithms is statistically
significant (using pair-wise student t-test). This statistical
significance becomes even much more obvious when the
complexity of the search space (dimension) gets increasesd.

For PSO initialised with randomized Halton sequence (H-
PSO), the results in Tables 1, 2, and 3 are consistent with our
preliminary results shown in [18] (even though the
experiment and parameter settings are slightly different).
The performance of H-PSO is very similar to U-PSO (PSO
initialised by the uniform method using a pseudo-random
generator). The performance of H-PSO is only got slightly
(not statistically significant) better thaen U-PSO when the
dimension of the search space got increasesd (except for f4 in
Table 1). In some rare case of high dimensional search
spaces, H-PSO was better than the other three algorithms (f6,
n=30 in Table 1) in finding optimal solutions.

For PSO initialised with randomized Faure sequence (F-
PSO), the results show that F-PSO was the worst algorithm,
finding fewest optimal solutions in and at a slower
convergence speed. F-PSO was is only comparable to the
other threes when the search dimension is small (except for
f6, n=40 in Table 1). Int this case, some times F-PSO was the
best (though the better performances of F-PSO compared to
other three are hardly statistically significant). The F-PSO
results are not entirely surprising –ed as suggested in the
literature [10], the low-discrepancy of the Faure sequence is
only guaranteed when the search dimension is small (n<30).

Overall results on the problems tried suggest that
randomized low-discrepancy sequences do provide (but not
always) a better way initialisation over the traditional and
more currently common way of use ofing pseudo-random
generators, to initialise PSO – but not always. The
randomized Sobol sequence seems to be a good candidate
based on the results of the experiments in this paper. The
randomized Halton sequence might only be useful when the
search dimension is high, and in contrary; by contrast, the
randomized Faure sequence sdeems to be suitable only for
low dimension search spaces. The mixed results coming
from the use of different randomized low-discrepancy
sequences in this paper is understandable. Even though their
deterministic versions have been proven to have optimal
discrepancies, in practice, their usefulness are is problem
dependent [10].

V. CONCLUSIONS AND FUTURE WORK
Overall, the conclusion seems inescapable that, at least for

global-best PSO, it is worth replacing uniform sampling of
the initial populations with randomized low-discrepancy

sequences (randomized Sobol sequence). However, the
choice of an arbitrary low-discrepancy sequence
initialisation phase does not necessary lead to improvement
in the overall performance of PSO (the case of randomized
Halton and Faure sequences).

In future, we plan to investigate more thoroughly the
reasons behind the success and failure of the three
randomized low-discrepancy sequences on the problem tried
in this paper, perhaps, through diversity and local fitness
landscape studies.

In this paper, we focus only on the initialisation phase in
PSO, but it is possible to use randomized low-discrepancy
sequences in other phases of PSO, which require random
decision making (since they simulate the uniform random
distribution). We plan this in the near future. The work
reported here could also be extended to other evolutionary
and nature-inspired algorithms (such as evolution strategies,
differential evolution, continuous ant colony optimization),
and we plan to do this at a later date.

ACKNOWLEDGMENT

The authors would like to thank all members of the Natural
Computation Group at the Military Technical Academy
(MTA), Vietnam, for useful comments and suggestions
related to this work. This work is partly funded through a
national research grant for fundamental sciences, grant
number: 203106

REFERENCES

[1] E. I. Atanassov, “A New Efficient Algorithm for Generating the
Scrambled Sobol’ Sequence”, in Proceedings of the 5th International
Conference on Numerical Methods and Applications, LNCS 2542,
Springer-Verlag, 83-90, 2003

[2] E.I. Atanassov, “Effcient CPU-Specific Algorithm for Generating the
Generalized Faure Sequences”, in Proceedings of LLSS’2003, LNCS
2907, Springer-Verlag, 121-127, 2004.

[3] P. Bratley and B. L. Fox, “ALGORITHM 659: Implementing
Sobol’s Quasirandom Sequence Generator”, ACM Transactions on
Mathematical Software, 29(1), 49-57, 2003.

[4] R. Brits, R., Engelbrecht, A.P, and F. A. Van Den Bergh, “Niching
Particle Swarm Optimization”, in Proceedings of the Fourth Asia-
Pacific Conference on Simulated Evolution and Learning (SEAL’2002),
692-696, 2002.

[5] E. Cantu-Paz, “On Random Numbers and the Performance of Genetic
Algorithms”, in Proceedings of Genetic and Evolutionary Computation
Conference (GECCO) 2002, 754-761, 2002.

[6] H.M. Chi, P. Beerli, D.W. Evans, and M. Mascagni, “On the
Scrambled Sobol Sequence”, in Proceedings of Workshop on Parallel
Monte Carlo Algorithms for Diverse Applications in a Distributed
Setting, LNCS 3516, Springer Verlag, 775-782, 2005.

[7] J.M. Daida, D.S. Ampy, M. Ratanasavetavadhana, H. Li, and O.A.
Chaudhri, “Challenges with Verification, Repeatability, and Meaningful
Comparison in Genetic Programming: Gibson’s Magic”, in Proceedings
of GECCO 1999, 1851-1858, 1999.

[8] R.C. Eberhart and J. Kennedy, “A New Optimizer using Particle
Swarm Theory”, in Proceedings of the Sixth International Symposium on
Micromachine and Human Science, 39-43, 1995.

[9] A.P. Engelbrechr, Fundamentals of Computational Swarm
Intelligence, John Wiley & Sons, 2005.

[10] E.J. Gentle, Random Number Generation and Monte Carlo Methods,
Springer-Verlag, 1998.

[11] X. Hu, Y. Shi,and R.C. Eberhart, “Recent Advances in Particle
Swarm”, in Proceedings of Congress on Evolutionary Computation
(CEC’2004), 90-97, 2004.

[12] J. Kennedy and R.C. Eberhart, R.C, “Particle Swarm Optimization”,
in Proceedings of the IEEE International Joint Conference on Neural
Networks, 1942-1948, 1995.

[13] S. Kimura, and K. Matsumura, “Genetic Algorithms using Low-
Discrepancy Sequences”, in Proceedings of GECCO 2005, 1341-1346,
2005.

[14] D.E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, Addison-Wesley, 1998.

[15] M.M. Meysenburg and J.A. Foster, “Random Generator Quality and
GP Performance”, in Proceedings of GECCO 1999, 1121-1126, 1999.

[16] M.M. Meysenburg and J.A. Foster, “Randomness and GA
Performance Revisited”, in Proceedings of GECCO 1999, 425-432,
1999.

[17] W.J. Morokoff, and R.E. Caflisch, “Quasi-random sequences and their
discrepancies”, SIAM Journal on Scientific Computing, 15(6): 1251-
1279, 1994.

[18] Nguyen Xuan Hoai, Nguyen Quang Uy, and R.I. Mckay, “Initialising
PSO with Randomized Low-Discrepancy Sequences: Some
Preliminary and Comparative Results”, to appear in Proceedings of
GECCO’2007, 2007.

[19] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, 1992.

[20] K.E. Parsopoulos and M.N. Vrahatis, “Particle Swarm Optimization in
Noisy and Continuously Changing Environments”, in Proceedings of
International Conference on Artificial Intelligence and Soft
Computing, 289-294, 2002.

[21] K.E. Parsopolous and M.N. Vrahatis, “Initializing the Particle Swarm
Optimization using Nonlinear Simplex Method”, in Advannces in
Intelligent Systems, Fuzzy Systems, Evolutionary Computation,
WSEAS Press, 216-221, 2002.

[22] W.H. Press, T.A. Teukolsky, W.T. Vetterling., and B.P. Flanenry,
Numerical Recipes in C++: The Art of Scientific Computing,
Cambridge University Press, chapter 7, 2002.

[23] M. Richards and O. Ventura, ”Choosing a Starting Configuration for
Particle Swarm Optimization”, in Proceedings of the Joint Conference
on Neural Networks, 2309-2312, 2004.

[24] M.P. Song and G.C. Gu, “Research on Particle Swarm Optimization:
A Reviews”. in Proceedings of the Third International Conference on
Machine Learning and Cybernetics, 2236-2241, 2004.

[25] X. Wang and F.J. Hickernell, “Randomized Halton Sequences”,
Mathematical and Computer Modelling, 32: 887-899, 2000.

TABLE 1. NUMBER OF PARTICLES = 50

F Dim
n

U-PSO H-PSO S-PSO F-PSO

SUC EVAL
(STD)

FIT
(STD) SUC EVAL

(STD)
FIT

(STD) SUC EVAL
(STD)

FIT
(STD) SUC EVAL

(STD)
FIT

(STD)
f1 10 100 6412

(527.9)
100 6485

(450)
100 5705.5

(495.6)
100 5984

(427.8)
20 100 18049

(1103.6)
100 18117.5

(1244.1)
100 15113

(1075.9)
100 19072.5

(1234)
30 100 36787.5

(2134.1)
100 35699.5

(2176.1)
100 29265

(1967.5)
100 38402.5

(2331.5)
40 100 62713.5

(3642.3)
100 59881.5

(3652.2)
100 48094.5

(3053.4)
100 63243.5

(3673.9)
f2 10 100 4909

(378.6)
100 4959.5

(412.2)
100 4368.5

(405.6)
100 4638

(416.3)
20 100 16544

(1276.2)
100 16190.5

(1045.8)
100 13765.5

(1004.9)
100 17053

(1237.8)
30 100 35275

(2243.9)
100 34215.5

(2274.1)
100 28818.5

(1932.1)
100 36741

(2247.9)
40 100 61487.5

(3825.0)
100 60284

(3422.6)
100 49639

(3171.3)
100 63874.5

(3582.3)
f3 10 100 8636.5

(567.3)
100 8704.5

(635.9)
100 7900

(566.3)
100 8201

(573.2)
20 100 23662

(1430.5)
100 23433

(1546.9)
100 20127.5

(1704.8)
4 51687.5

(24786)
19.96
(0.23)

30 100 46920.5
(3730.7)

100 45517.5
(3511.1)

100 37897
(2572.7)

0 20.16
(0.19)

40 99 78499.5
(6218.7)

0.0012
(0)

100 76571.5
(5938.9)

100 62177
(5156.2)

0 20.29
(0.21)

f4 10 4 41425
(14854)

2.76
(1.52)

4 29037.5
(6500.8)

3.03
(1.57)

6 49258.3
(21157)

2.78
(1.30)

3 62833.3
(31403)

3.39
(2.0)

20 0 15.55
(6.21)

0 15.15
(5.95)

0 10.32
(3.99)

0 14.2
(5.77)

30 0 31.88
(10.19)

0 10.18
(10.43)

0 19.92
(6.81)

0 32.82
(9.54)

40 0 59.06
(14.75)

0 58.02
(18.56)

0 29.83
(8.63)

0 57.14
(13.44)

f5 10 0 1.04
(2.94)

0 0.68
(1.95)

0 0.07
(0.01)

0 0.41
(2.64)

20 0 30.64
(24.35)

0 33.61
(29.00)

0 1.134
(1.13)

0 36.73
(36.82)

30 0 96.15 0 73.78 0 4.46 0 144.67

(43.78) (37.24) (2.88) (90.07)
40 0 169.99

(62.13)
0 135.05

(59.63)
0 10.26

4.95
0 269.55

(102.7)
f6 10 0 0.06

(0.03)
0 0.06

(0.03)
0 0.07

0.03
0 0.06

0.03
20 17 20555.9

(8900.1)
0.03
0.02

19 26889.5
(18482)

0.03
0.02

17 15150
(1182.7)

0.04
0.03

14 19728.6
(2950.5)

0.04
0.02

30 27 36700
(7144.8)

0.02
0.02

41 35592.9
(4747.4)

0.03
(0.02)

33 29707.6
(8097.5)

0.02
0.02

33 39333.3
(10148)

0.03
0.02

40 49 60421.4
(3652.6)

0.02
(0.01)

38 57702.6
(3536.1)

0.02
(0.02)

47 45121.2
(2967.4)

0.02
(0.01)

59 61018.6
(3903.1)

0.02
(0.01)

TABLE 2. NUMBER OF PARTICLES = 100.

F Dim
n

U-PSO H-PSO S-PSO F-PSO

SUC EVAL
(STD)

FIT
(STD) SUC EVAL

(STD)
FIT

(STD) SUC EVAL
(STD)

FIT
(STD) SUC EVAL

(STD)
FIT

(STD)
f1 10 100 10984

(675.8)
100 10943

(731.02)
100 9951

(714.85)
100 9398

(766)
20 100 31359

(2012.6)
100 31444

(2063.6)
100 26041

(1832.9)
100 31546

(2073.7)
30 100 63161

(3950.9)
100 62614

(3820.9)
100 50294

(3156.2)
100 64895

(3818.9)
40 17 98282.4

(1190.2)
0.006
(0.007)

23 96934.8
(1998.8)

0.005
(0.005)

98 82623.5
(5345.9)

0.002
(0.001)

5 96500
(1330.4)

0.012
0.013

f2 10 100 8397
(635.2)

100 8562
(568.7)

100 7539
(587.7)

100 6880
(561.7)

20 100 27966
(1736.5)

100 28029
(1754.5)

100 23986
(1725.5)

100 28417
(1909.2)

30 100 60627
(3671.6)

100 59186
(3619.7)

100 49883
(3542.7)

100 61855
(3471.8)

40 9 98044.4
(1402.8)

0.006
(0.006)

27 96011.1
(3927.5)

0.003
(0.002)

100 87119
(5492)

5 97540
(2326.6)

0.011
(0.022)

f3 10 100 14701
(861.1)

100 15006
(1002.6)

100 13606
(876.8)

100 13167
(856.6)

20 100 40318
(2736.9)

100 40086
(2345.9)

100 34171
(1896.4)

89 41942.7
(6562.4)

17.93
(5.95)

30 100 77432
(4110.1)

100 78298
(4119.2)

100 64767
(4556.1)

2 89250
(2192)

19.9
(1.75)

40 0 0.023
(0.021)

0 0.020
(0.018)

24 95904.1
(2882.8)

0.003
(0.002)

0 20.33
(0.23)

f4 10 8 55100
(23239)

2.39
(1.28)

11 57109.1
(11688)

2.03
(1.04)

6 60266.7
(21988)

2.09
(1.04)

16 55075
(22738)

2.04
(0.96)

20 0 12.85
(4.66)

0 11.93
(4.2)

0 9.23
(3.67)

0 13.11
(4.13)

30 0 34.68
(9.38)

0 34.05
(8.9)

0 20.24
(6.58)

0 35.5
(11.49)

40 0 76.96
(16.86)

0 75.58
(19.94)

0 32.6631
(9.47)

0 79
(19.31)

f5 10 0 2.33
(6.04)

0 2.84
(6.1)

0 0.15
(0.09)

0 0.16
(0.08)

20 0 40.46
(28.66)

0 37.02
(24.31)

0 1.94
(1.57)

0 31.77
(23.14)

30 0 99.06
(41.79)

0 83.63
(35.38)

0 6.98
(3.62)

0 112.6
(57.72)

40 0 163.57
(56.84)

0 139.384
(41.63)

0 14.1164
(5.47)

0 226.09
(90.22)

f6 10 0 0.058
(0.029)

0 0.063
(0.032)

0 0.055
(0.03)

0 0.063
(0.026)

20 9 32666.7
(16682)

0.037
(0.03)

4 44400
(23769)

0.031
(0.02)

15 33026.7
(17104)

0.26
(0.02)

8 38112.5
(11312)

0.04
(0.03)

30 25 62948
(4175)

0.03
(0.01)

35 61260
(3522.1)

0.02
(0.02)

33 49500
(3920)

0.03
(0.02)

26 62800
(3779.7)

0.02
(0.02)

40 10 96850
(2077.5)

0.02
(0.02)

14 95064.3
(4404.3)

0.01
(0.01)

45 79406.7
(4495.6)

0.02
(0.01)

9 97977.8
(1965.2)

0.02
(0.03)

TABLE 3. NUMBER OF PARTICLES = 200.

F Dim
n

U-PSO H-PSO S-PSO F-PSO

SUC EVAL
(STD)

FIT
(STD) SUC EVAL

(STD)
FIT

(STD) SUC EVAL
(STD)

FIT
(STD) SUC EVAL

(STD)
FIT

(STD)
f1 10 100 19102

(1364.9)
100 19298

(1244.8)
100 17276

(1212.7)
100 16944

(1090.3)
20 100 54682

(3271.1)
100 54588

(3654.8)
100 46146

(2825)
100 50720

(3225.5)
30 4 97100

(1669.3)
0.008
(0.008)

9 96600
(2265)

0.007
(0.008)

99 87983.3
(6161.4)

0.001
(0)

6 97966.7
(1997.7)

0.007
(0.006)

40 0 7.94
(6.43)

0 5.08
(4.38)

0 0.14
(0.11)

0 8.44
(5.72)

f2 10 100 14542
(1051.1)

100 14808
(1019.8)

100 13364
(944.68)

100 12458
(967.9)

20 100 48840
(3146.8)

100 48776
(3319.5)

100 42098
(2811.4)

100 45762
(2607.5)

30 20 96430
(2421.2)

0.005
(0.006)

36 96983.3
(2608.3)

0.004
(0.003)

99 86563.6
(5859.9)

0.001
(0)

16 97500
(2260.4)

0.005
(0.005)

40 0 10.03
(8.9)

0 6.71
(5.7)

0 0.27
(0.24)

0 13
(10.1)

f3 10 100 25974
(1313.7)

100 26154
(1367.7)

100 23814
(1453.2)

100 23678
(1302.6)

20 100 68536
3926.6

100 68612
(3674.6)

100 59398
(3354.2)

100 64250
(3349.2)

30 0 0.021
(0.02)

0 0.02
(0.02)

3 97600
(1708.8)

0.003
(0.002)

0 0.22
(1.99)

40 0 1.54
(0.69)

0 1.34
(0.67)

0 0.08
(0.06)

0 19.21
(3.99)

f4 10 17 80176.5
(12235)

1.69
(0.82)

17 63564.7
(14669)

1.97
(1.05)

15 68080
(16522)

1.77
(0.77)

27 63511.1
(17045)

1.58
(0.74)

20 0 14.51
(4.7)

0 14.37
(3.97)

0 10.18
(3.54)

0 16
(6.23)

30 0 48.46
(11.9)

0 48.04
(14.38)

0 26.25
(7.8)

0 50.071
(2.37)

40 0 116
(23.8)

0 108.37
(22.05)

0 47.20
(14.57)

0 119.06
(27.76)

f5 10 0 3.23
(4.1)

0 3.35
(5.16)

0 0.31
(0.22)

0 0.28
(0.13)

20 0 43.82
(20.24)

0 43.25
(24.04)

0 3.19
(1.95)

0 23.03
15.27

30 0 87.78
(33.94)

0 89.57
34.56

0 10.94
(4.59)

0 76.23
(38.36)

40 0 153.82
(51.17)

0 149.7
(46.14)

0 17.72
(5.35)

0 167.32
(61.83)

f6 10 0 0.06
(0.03)

0 0.07
(0.03)

0 0.06
(0.03)

0 0.06
(0.03)

20 9 65533.3
(17978)

0.042
(0.03)

10 60020
(9245.5)

0.041
(0.029)

9 54355.8
(17825)

0.043
(0.03)

6 52300
(6079)

0.041
(0.033)

30 4 97700
(1113.6)

0.027
(0.027)

1 94200
(0)

0.029
(0.035)

30 87353.3
(5279.7)

0.03
(0.02)

4 98800
(748.3)

0.028
(0.03)

40 0 0.83
(0.21)

0 0.73
(0.2)

0 0.07
(0.06)

0 0.9
(0.16)

