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Abstract— Symbolic Regression is one of the most important
applications of Genetic Programming, but these applications
suffer from one of the key issues in Genetic Programming, namely
bloat – the uncontrolled growth of ineffective code segments,
which do not contribute to the value of the function evolved,
but complicate the evolutionary proces, and at minimum greatly
increase the cost of evaluation. For a variety of reasons, reliable
techniques to remove bloat are highly desirable – to simplify the
solutions generated at the end of runs, so that there is some
chance of understanding them, to permit systematic study ofthe
evolution of the effective core of the genotype, or even to perform
simplification of expressions during the course of a run.

Previous approaches to arithmetic simplification rely on prov-
ably safe algebraic transformations, applied as rewrite rules,
repeatedly re-writing segments of the expression until a minimal
form is reached. This paper introduces an alternative approach,
Equivalent Decision Simplification, in which subtrees are evalu-
ated over the set of regression points; if the subtrees evaluate to
the same values as known simple subtrees, they are replaced.

Equivalent Decision Simplification performs substantially bet-
ter than standard approaches, generating far simpler expressions,
but at the cost of computational time. It is thus well-suitedto
simplifying the final solutions generated by a run, or to post-run
analysis, but is not intended to replace algebraic simplification
in the course of a GP run.

I. I NTRODUCTION

Genetic Programming (GP - [1]–[4]) has become well-
known as a method for machine learning of models from data,
generally for the purpose of predicting the values of previously
un-seen data. In these applications, GP is used to generate
models of the data, with the fitness criterion generally being
to minimise some measure of the error in the data.

However GP suffers from a well-known problem, its propen-
sity to generate large amounts of ineffective code (bloat – [2],
[3], [5], [6]). Bloat causes a number of difficulties

1) Even though it has no effect on fitness, the ineffective
code still has to be evaluated; as a result, the computa-
tional cost of GP is unnecessarily increased – in many
cases, linearly in the amount of bloat

2) Bloat makes it difficult to understand the meaning of the
model which has been generated, with the result that,
while GP is frequently cited as a white-box learner (by
contrast, for example, with neural networks), in reality
it often functions as a black-box, yielding no useful
explanatory power

3) Bloat hides the true complexity of the effective part
of the model, making it difficult to trade off model
complexity and accuracy, as is required under machine
learning theory if GP is to yield models which generalise
well to new data

4) Bloat masks the behaviour of the effective part of the
code, making it difficult to discern or understand the

evolutionary behaviour of the effective part of the code
5) Bloat masks the true structure of building blocks, mak-

ing it difficult to determine the effect of an algorithm
on building blocks (unless bloat is removed, two code
segments with the same effective code are likely to be
treated as different).

Bloat has been heavily researched, covering its causes, ways
to avoid it, and ways to remove bloat (redundant code) from
evolved trees. In this work, we emphasise simplification for
the purpose of understanding the behavior of GP populations–
for understanding the evolution of effective diversity, building
blocks etc. For such analyses, the primary goal is complete
– or at least, near complete – removal of ineffective code;
computational efficiency is much less important. We contrast
this with other applications, for example code simplification
within GP runs in order to exert parsimony pressure, in which
computational efficiency is crucial and completeness may be
far less important.

In this paper, we first consider previous work on sim-
plification – mainly algebraic simplification – in section II.
Section III introduces Equivalent Decision Simplification, our
new tree simplification method. The experimental context of
this study is described in section IV, while section V provides
the results of the simplification method, and some comparative
results with algebraic simplification. Finally, in sectionVI, we
discuss how these methods provide new information about the
evolutionary behaviour of effective code GP systems, mention
how the software may be accessed by other researchers, and
discuss how we hope to extend this work in the future.

II. BACKGROUND

A. Redundancy

In analysing GP dynamics, redundancy is a key issue. GP
has redundancy in the genotype-to-phenotype mapping – that
is, several individuals with different genotypes may never-
theless have the same phenotype. These different genotypes
may have different complexities, and a GP algorithm is not
constrained to find the simplest. As a result, GP can – and
generally does – suffer from the phenomenon of bloat, in
which both before and after the population has converged
phenotypically, the complexity of the individuals increases
rapidly.

We call the genotype components which typify bloat “re-
dundant structures”. We can categorise redundant structures
into two main types:

• Neutral parts.
If we change any node in a neutral part, it has no effect
on the phenotypic value. For example, in0 ∗ f(x), f(x)
is a neutral part.



• Redundant expressions.
We can represent a redundant expression by a different,
smaller tree using some conversion, for example:1 ∗
f(x) → f(x), where1 ∗ f(x) is a redundant expression.

In this study, we call a neutral part an “intron”, and
distinguish it from a redundant expression. By definition, trees
which contain introns are redundant expressions – but thereare
also other types of redundant expressions.

Because of redundant structures, the situation can readily
occur that the phenotype space is converged, but the genotype
space has high diversity. It is well known that redundant
structures are very important in maintaining robustness from
crossover and mutation. However the effects of introns, redun-
dant structures and effective code on GP search differ, so we
need to distinguish them in analysis.

Regarding introns, Soule proposed the equivalent concept
of “inviable code” [5], [6], and reported the size before and
after removing the inviable code. However Soule did not study
redundant expressions as a whole, but rather introns. Soule
concluded that analysis of the amount of inviable code is very
difficult, and proposed no general method to measure it [6].

Regarding redundant expressions, a very simple method
using grammar rewrite rules was proposed by Koza [2], but
no results were shown.

III. SIMPLIFICATION OF GP INDIVIDUALS

We call the operation of converting a tree structure into an
equivalent but smaller structure “simplification”. In thisstudy,
we propose some novel tree simplification methods.

First, we need to make the definition of simplification pre-
cise. Naturally, we would like tree simplification to minimise
tree size under the condition that the trees’ semantics are
equivalent. We call such a simplification “canonical simpli-
fication”. However, finding the canonical simplification of a
given tree is very difficult. For example, if a tree represents
a program, finding the canonical simplification is equivalent
to finding the minimum description of that program (i.e.
finding its Solomonoff/Kolmogorov [7] complexity). This is
not Turing-computable. Therefore, we need to approximate.
In this study, we compare two simplification methods, “rule-
based simplification” (RBS), also known as “algebraic simpli-
fication” and “equivalent decision simplification” (EDS).

As mentioned in the introduction, we distinguish introns
from redundant expressions. Figure 1 shows an example of an
intron and a redundant expression.
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Fig. 1. Example of Intron and Redundancy Expression

A. Rule-based Simplification

For example, let the non-terminal nodes for a given problem
be {+,−, ∗, /}, with terminal nodes{X, 1}. In this setting,
canonical simplification would entail finding the minimal
length formula obtainable by applying equivalent algebraic
operations. However we can partially simplify by using rules
such as,1 ∗X → X or 0 ∗X → 0. There are many such rules
in arithmetic.

Soule’s simplification [5], [6] may be viewed as rule-based
simplification in which the simplification targets are limited
to introns. However we have found rule-based simplification
insufficient for our requirements. For example, the following
formula is not readily simplified by rule-based simplification.

(X − 1) + (1 − X) (1)

B. Equivalent Decision Simplification

We propose a new simplification method based on de-
termining equivalence between specific simple trees and a
subtree, known as “Equivalent Decision Simplification”. In
this context, ”equivalence” depends on the problem domain;
in a numeric domain such as symbolic regression, the de-
termination of equivalence is made numerically. That is, if
two expressions yield numerically equivalent values over a
suitable range of inputs, they are regarded as equivalent. For
example, equivalent decision simplification may be carriedout
as follows, in a symbolic regression problem.

1) Determine a suitable set of simple treesSsimple.
2) Check all subtrees in the target tree for equivalence to

a tree inSsimple.
3) If some subtree is equivalent to a tree inSsimple, and

larger than it, replace that subtree with the simple tree.
4) Repeat this procedure recursively until it fails.

In addition, we introduce an ordering on nodes, and sort the
child nodes of commutative operators. One issue is how to
determine a suitableSsimple. In symbolic regression problems,
the set of terminal nodes – in our case,X , 0 (identity element
of +) and 1 (identity element of *) – form a reasonable
choice forSsimple, but of course more complex choices could
reasonably be made.

EDS thus extends RBS by providing simplifications which
are either:

1) too difficult to prove for use in RBS
2) true but unprovable in arithmetic (Goedel’s Theorem)
3) not valid, but hold (or nearly so) for the instances used

in training – in which case, they are equivalent from the
perspective of the learning algorithm

From another perspective, we may think of RBS as a
syntactically-based (proof-theoretic) simplification approach,
and EDS as semantically-based (model-theoretic). Thus RBS
simplifications correspond directly to proofs in the given
domain, whereas EDS simplifications correspond to model-
theoretic derivations of entailment. This has an important
practical consequence: we may use the practical wisdom from
many years of work in automated derivation to guide our
choice of method: EDS is likely to be especially effective
in domains where proof-theoretic methods are difficult (con-
tinuous arithmetic, random Boolean expressions), but may be
comparatively more expensive in domains such as Horn clause



logic (logical rules) in which highly efficient proof-theoretic
methods are known.

Despite its computational cost, even equivalent decision
simplification is not a universal panacea. For example, we
cannot simplify(X + 1)(X − 1) to X2 − 1 unless we include
X2 − 1 in Ssimple.

IV. EXPERIMENTAL SETTING

In this study, we use standard GP and focus on a continuous
real-arithmetic domain, using a typical symbolic regression
problem [2]–[4], [8].

A. Problem Domain

The chosen problem is, given the 20 randomX and Y
values shown in Figure (2) over the range[−π, π], to find
an expression for the target functioncos 2X (in the figure, the
20 points are represented by+ symbols). The 20 points are
generated by dividing the range into 20 even intervals, and
sampling uniformly randomly across each interval. The sample
is generated once for each run, then held constant throughout
the run.
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Fig. 2. 20 sample points

Problem

Objective function :cos 2X [−π, π]
Operators :{+,−, ∗, %, sin}
Operands :{X, 1}

where “%” is protected division, satisfyingX%0 → 1. (note
that the target function,cos, is not included in the operator
set).

This problem has three separate simple solutions:
opt1 1 − 2 sin2 X
opt2 sin(π

2
− 2X)

opt3 sin(π
2

+ 2X)

Of course, there are others: any normalised linear combination,
and any transformation of sine’s argument byn ∗ 2π, will
give a new solution, so that there are infinitely many different
solutions

B. GP Settings

The GP settings used in our experiments are as follows:
• Number of runs: 1000
• Generations per run: 200
• Population size: 500
• Crossover rate: 0.9, using subtree crossover
• Mutation: subtree mutation, rate 0.1
• Selection: tournament selection, tournament size 3

• Initialisation: ramped half-and-half
• Tree Depth limit: initial limit = 6; subsequent limit = 15
• Repair mechanism: on depth violations, re-try up to 100

times
The raw fitness(RF ) is calculated from the sum of the

absolute errors at the 20 data points. Given 20 fitness points
St = {Xi, i = 1, 2, . . . , 20}, the fitnessf of the individual
which represents functiong(X) is given by:

E =

20
∑

i=1

| cos 2Xi − g(Xi) | (2)

f =
1

1 + E
(3)

An individual is regarded as a solution when all 20 errors are
less than0.01, as follows:

g(X) =







solution, ∀Xi ∈ St,
| cos 2Xi − g(Xi) |≤ 0.01

non − solution, otherwise
(4)

Table I shows the rules used in rule-based simplification.

TABLE I

REWRITE RULES

A + 0 → A, 0 + A → A, A × 1 → A, 1 × A → A
A × 0 → 0, 0 × A → 0, sin 0 → 0

X − X → 0, 1 − 1 → 0, A − 0 → A
0%0 → 1, A%0 → 1, 0%A → 0, X%X → 1, A%1 → A

whereA represents any subtree, and % represents protected divide.

Ssimple in III-B is set to {0, 1, X}.
The flow of simplification is as follows:
1) Let the genotype tree of individuali be ti
2) Apply rule-based simplification recursively to all nodes

of ti, until there is no node to which rule-based simpli-
fication can be applied, obtainingt′i.

3) Apply equivalent decision simplification to all nodes of
t′i. If any node is translated, let the translated tree beti
and go to (2). If there is no node to which EDS can be
applied, finish and lett′i be the final result.

That is, simplification is carried out repeatedly until neither
type of simplification – rule-based or equivalent decision –
can be applied.

C. Numerical Computation Issues

This work leads to some difficult issues in numerical
computation, which we consider together here.

1) Computing Zero: Because of numerical computation
errors, the issue of exactly what values should be regarded
as ”Zero” is complex. For example, the value of the formula

1

sin(1)
× sin(1) − 1 (5)

is theoretically zero. However in code generated by the g++
compiler on an intel 686-class architecture, this expression
evaluates to -1.0625E-17. One ”solution” is to ignore this.
However it seems undesirable, mainly because of the effect
on protected division. For example, X%ǫ, with ǫ ≪ 1 (e.g.ǫ
might arise from eq. 5). Ifǫ is treated as 0, it evaluates to 1;
if ǫ is treated as nonzero, it evaluates to a very large number.
We don’t believe there is any completely satisfactory general
solution. Pragmatically, we chose to:



• Treat values below10−9 as 0.
The choice of10−9 was somewhat arbitrary; however
we note that in this problem, the criterion for a solution
uses 0.01, and the range ofx is [−π, π], leaving a large
margin.

• Use the same criterion in both the GP runs and the
analysis program.

We note that, comparing otherwise identical runs with different
values ofǫ in the 10−9 range, differences arise after about
generation 20, so the choice ofǫ does have a perceptible effect.

2) Computing Phenotypic Measures:In this paper, the
“phenotype” is the numerical vector of the 20 function values
of an individual, calculated at the 20 sample points. In order
to calculate phenotypic quantities such as the total number
of phenotype values or the entropy, we need to compare
phenotype vectors, testing whether they are the same. We
could not find a completely satisfactory theoretical definition
for ’the same’; pragmatically, we chose to:

• Set the acceptable error valueǫp.
• Distinguish phenotypic vectorsv1 andv2 by calculating

the relative errorEi of each of their componentsi (if v1i

is zero, thenv2i must also be zero; in this case, we may
skip the corresponding relative error check):

Ei =
|v1i − v2i|

|v1i|
(6)

(we use the relative error rather than the absolute error
to avoid scale effects)

• If, for all i, eitherEi<ǫp, or bothv1i andv2i are zero,
then treatv1 andv2 as identical.

How should we choose thisǫp value? In this work, we chose
to setǫp to a value sufficient to distinguish between a solution
and a nearby non-solution. That is, we wish to distinguish
between a solution vectorvsol and a neighbouring non-solution
vectorvnon represented by:

vsol = {cos 2xi}, xi ∈ ST (7)

vnon = {cos 2xi} + {δ, 0, 0, · · · , 0}, xi ∈ ST (8)

(note that the position ofδ in the tuple has no effect).
For δ, we use the error value 0.01 previously chosen for

checking solutions. Then the relative norm error betweenvopt

andvnon may be defined as:

||vsol − vnon||
||vsol||

=

√
δ ∗ δ

||vopt||
(9)

=
0.01

3.148273830304322...
(10)

= 0.0031763437804370942... (11)

≡ ǫpheno (12)

(where 3.148273830304322 was calculated across the data
points in our simulations). We then use0.9ǫpheno ≈ 0.00286
as the critical error for distinguishing two vectors (0.9
is a margin to avoid errors). That is, we use,ǫp =
0.0028587094023933847.... Note that it is not possible to
simply use g++’s== for comparison, because each element
of the vector is represented as adouble.

We used this to calculate phenotypic entropyHp as follows:
1) Let Ni be the number of individuals in populationP

which belong to phenotypei.

2) We treat the ratio (Ni/NP ) as an estimate of the
probability pi of i. (NP: population size)

3) We compute the phenotypic entropyHp as:

Hp = −
∑

i∈P

pi loge pi (13)

3) Computing Genotype Entropy:Given a population of
genotypes (simplified or not), computation of the genotype
entropyHg parallels that of the phenotype entropy:

1) Let Ng be the number of instances in populationP of
genotypeg

2) As before, we treat the ratio (Ng/NP ) as an estimate
of the probabilitypg of g.

3) We compute the genotypic entropyHg as:

Hg = −
∑

g∈P

pg loge pg (14)

4) Computing Simplifications:In equivalent decision sim-
plification, we need to check whether each subtree is equiva-
lent toX , “1” or “0”. We do this by checking whether it yields
the same value on each of the 20 sample pointsST. But again,
we have to deal with the problem of numerical error – what
does ”the same value” mean? Again, we take a pragmatic
approach, as there does not seem to be much theory to fall
back on. Letfs(X) be the function computed by subtrees. To
check whether it is equivalent to ”0”, the criterion mentioned
in sub-section IV-C.1 is used (the 20 values offs(X) must be
below10−9 ). For X and 1, we check if the 20 corresponding
errors betweenfs(X) and{X or 1} are below10−3 (0.1%). If
so,fs(X) is regarded as equivalent to{X or 1}. The following
is pseudocode for the test forX .

/*
STest array of 20 sample data
fs function computed by subtree
fx function f(x)=x

*/
for x in (STest){

error = relativeError(fx, fs(x));
if(error > 0.001) return false;

}
return true;

There are many cases this criterion is not able to check.
For example, consider an expression such as:a + a, where
a = 0.9×10−9. If we test whether the whole expression from
node “+” is zero or not, the test will fail since the value is
2 × 0.9 × 10−9 = 1.8 × 10−9>10−9. However,a will be
found equivalent to zero because the value is below10−9. At
the next step,a + a → 0 + 0 → 0. Of course, this case is
not damaging, but there is some risk in other cases of growing
errors to large values. How to treat this problem is deserving
of further study.

D. Experimental Trials

1000 independent runs of the GP system were performed,
using 1000 different random seeds, the entire populations
being saved for the subsequent analyses.

Part of this investigation focuses on illuminating the dif-
ferences between runs which are rapidly successful in finding
a solution, runs which are successful more slowly, and runs



which do not succeed in finding a solution. To this end, three
separate sets of 100 runs were selected from the 1000-run
sample by stratified random sampling:

• C20, consisting of 100 runs which found a solution
between generations20 ∼ 29.

• C50, consisting of 100 runs which found a solution
between generations50 ∼ 69.

• Cfail, consisting of 100 runs which did not find a solution
within the 200-generation limit of the runs.

V. RESULTS AND DISCUSSION

In this section, we show a number of graphs and tables
describing the results of our experiments and analyses. In all
plots, the x axis shows the generation, while the y axis shows
the value of the particular parameter under investigation.The
plots show three graphs, corresponding toC20, C50 andCfail

(i.e. fast-solving, slow-solving and failing runs – respectively
opt 20-29, opt 50-69 and fail in the legends).

It is important to consider what EDS buys us over RBS. Let
us take as an example the 100C20 runs. These found a total
of 102,534 different genotypes which, under EDS, reduced to
size 12 (i.e. one of the three solutions noted in table V). The
average size of these genotypes (prior to simplification) was
138.2. Thus more than 90% of the structure of these solutions
was redundant code.

On the other hand, if we apply only RBS, the average size
of the solutions after simplification is15.1 – that is, around
25% of EDS simplifications are missed. In fact, only about
39% of the genotypes are simplified to size 12. At the other
extreme, 57 of these genotypes – which EDS simplifies to 12
nodes – retain more than 100 nodes, even after rule-based sim-
plification; in the worst cases, two (apparently coincidentally)
have 214 nodes. These are presented as examples in table II1

The rule-based simplification reported here is strictly more
powerful than previous studies [5], [6], since it simplifies
some instances of redundant expressions in addition to the
introns removed in the cited works. We thus argue that our
simplification approach (combining rule-based and equivalent
decision methods) constitutes a significant improvement, per-
mitting more reliable analyses of effective code. The rest of
this section outlines some kinds of analyses we can perform
because of the effectiveness of EDS.

A. Evolutionary Dynamics of Genetic Programming

In this subsection, we consider the evolutionary dynamics of
Genetic Programming; for economy of exposition, we use the
plots of C20, C50 andCfail rather than the overall population
plots, but pay attention mainly to the overall shapes of the
graphs, rather than the differences between them.

Typical studies into GP evolutionary dynamics generate
plots such as figures 4(a) (showing the size of trees in the
evolving populations), and 3(a) and (c) (showing the genotypic
and phenotypic entropies) – though the very limited informa-
tion provided by the genotypic entropy in this form means that
it would usually be ignored.

From these information sources, what can we observe?
Firstly, figure 4(a) shows that the un-simplified tree size is
monotonically increasing, but little else.

1Expressions are presented in Reverse Polish Notation; “S” represents sine,
and “/” protected division.

The genotypic diversity metric is fairly uninformative. It
starts at a value just above 6, rapidly increases to around 6.16
(the theoretical maximum isloge 500 ≈ 6.21), then from about
generation 10 falls very gradually to around 6.14.

The phenotypic diversity metric is perhaps more interesting.
Figure 3(c) certainly shows some structure. It starts at a value
just below 6 . It falls rapidly to a local minimum around 4.5
(generation 4), rises rapidly to around 5.4 (generation 10), then
falls monotonically toward an asymptote.

The initial rapid loss of diversity is entirely expected, asthe
system rapidly eliminates highly unfit individuals. The next
phase, of rapidly increasing phenotypic entropy, is slightly
surprising, but we will see below that our new methods are
able to provide at least a partial explanation, in terms of
increasing size permitting an increasing range of available
effective code genotypes, and hence allowing the variation
operators to dominate selection, at least for a time. Finally,
though, sufficiently good solutions are found that selection
dominates and diversity decreases.

EDS allows us to generate two further figures, 4(b) and 3(b).
Interestingly, the latter appears to bring us little advantage –
it appears very similar to figure 3(c). This is an important
point – the phenotype entropy and the genotype entropy of
subtrees simplified by EDS are almost identical, strongly
suggesting that EDS has found most available simplifications.
This is confirmed by statistical testing. The differences be-
tween figures 3(b) and (c) in theirC20, C50 andCfail values
respectively, were tested using Welch’s two-sidedt-test [9]. At
no point in the evolution of any of these three sets of trials did
the difference between the effective genotype entropy and the
phenotype entropy reach even the 5% significance level. This
suggests that EDS is doing an effective job, in that there is
high similarity between the number of genotype species and
the number of phenotype species. That is, if two expressions
are in fact equivalent (in the sense of generating the same
values at the 20 sample points), then their reduced genotypes,
after EDS, are likely to be identical – i.e. EDAS has found
the true minimal form in most cases.

Figure 4(b) reveals a great deal of additional information
about the runs. Firstly, unlike the total node size, the effective
node size drops sharply in the first few generations, confirming
our earlier conclusion that many solutions are rapidly lost, and
suggesting that many of the individuals lost have relatively
large effective code size. The effective code size then rises
rapidly, as with the phenotype entropy, until about generation
10, when there is a local maximum. We interpret this phase
as the discovery of some relatively fit, small expressions such
asX , 1 and sin X , These small expressions out-compete the
first successful group of larger individuals, and size declines.
Interestingly, this effect seems to be stronger in runs which
are destined to succeed soon thereafter, suggesting that atleast
some of these small expressions – perhapssin X – are useful
building blocks.

We note that the effective-code-size behaves in a slightly
different way than we might expect from the seminal papers
of Nordin and Banzhaf on parsimony pressures on effective
code in [10]. After an initial drop in size subsequent to finding
the solution, effective code size continues to rise. However our
problem may be slightly atypical in this respect, since the need
for accurate approximations toπ may counterbalance the effect



TABLE II

SIMPLIFICATION EXAMPLES: RULE BASED VS EQUIVALENT DECISIONSIMPLIFICATION1

Expression 1 Expression 2

Original 276 Nodes:

111++1-1X/1X/X-1-1X/+1*1S1*/1S1*/+11+11*X
1X*1-X*XX+X1/X*-++X11-1+1X-//+*/-*X1111*-
--S1*+1SX1/1+1X-1X-*X1111*---S1**/-X1S1*X
*1-11*11++1+S*/1+X1-S1X-*1S1X-*S1X-X**11-
1*X/+*/1X/+1S1XX11++1-//1+1S1X-*1SS111S+*
*1SX1-X+-1*X/+*/-+*+XX1X++1-/11+*1-*11/11
+SS*X+XX1X++1-/11+*1111-/*+*+S

294 Nodes:

X1X++1-111+/XX/X-X1X++-1X/+XXX*1X-/*S*1S1
*/XX+1*1X*-XX*X+XX+1/+*XX1*1X+/*1X1X-*-*-
1*/+11+11*XX1-11+/X*X1-X+X1/X*-++111-1+X/
/+*/-*X1111*---S1*+1S11/1+11X-*1X+*/-11*1
+X+SX1/11*1+/1X*1-11X*/11/+X+*/+1S11/1+1S
1X-*XX1//SS111S+**11-1*X/+*/-+*+XX1X++1-/
11+*1-*11/11111*--+SS*X+XX1X++1-/11+*1111
-/*+*+S

Simplified
by RBS

214 Nodes:

X1SX*1-11+1+1+S*/1+1X-X1-S*1X-X*1X-1S*S**
/1X/+1S1X11+X+1-//1+1X-1S*1S1+1SS*1SX1-X+
-X/+*/-+1S1X+1X-1X-*X1-S*/-*11+1+1-1X/1X/
X-1-1X/+1S/1S/+11+X1-X*XX+XX*-+X+X11X-//+
/-*X1-S++11+X1X+X+1-/*1-*11+SSX+11+X1X+X+
1-/*1+*+S

214 Nodes:

X11+/1X/1+X+X1-*/11+X+S+1S11+1X-1S*1S1+1S
S**/-+1S11+1X+1X-*/-*1X+X+1-111+/1X-1X+X+
-1X/+XX*1X-/X*S*1S/XX*X+XX++XX+X-*X1X+/X*
11X-X*-*-/+11+X1-11+/X*X1-X+XX*-+X+11X//+
/-*X1-S++11+X1X+X+1-/*1-*11+SSX+11+X1X+X+
1-/*1+*+S

Simplified
by EDS

12 Nodes:

11+SSX+11+*S

12 Nodes:

11+SSX+11+*S
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Fig. 3. Variation in Entropy of Genotype and Phenotype

of parsimony pressures arising from destructive crossover.

B. Comparisons of Successful and Unsuccessful Runs

When we come to examine the differences between suc-
cessful and unsuccessful runs, we note first that figure 4(a)
confirms the results of [11], [12], who were unable to detect
a relationship between size, and when, or whether, a solution
was found. Of course, it goes almost without saying that the
un-simplified genotype entropy (figure 3(a)) is also unable to
make such a distinction.

However the phenotype entropy (figure 3(c))is able to
distinguish the successful from the unsuccessful runs, albeit

only retrospectively. The phenotype entropy of a successful
run is lower than that of an unsuccessful run in the generations
after the solution has been found, the asymptotes being around
1.7 for a successful run, 2.5 for an unsuccessful run.

The size of the effective code (figure 4(b)) is highly corre-
lated with the success of evolution, the three different classes,
C20, C50 and Cfail, being readily distinguished. They first
become distinct around generation 15 – well before the first
solutions are found – indicating that effective code size isable
to prospectivelyidentify successful runs. Thus EDS provides
important new information, not available without an effective
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simplification procedure.

C. The Effects of Evolution on Frequent Small Subtrees

TABLE III

MOST FREQUENT3A TEMPLATES IN UN-SIMPLIFIED INDIVIDUALS 1

Generation: 80 120 200
C20 11+, 11− 11+, 11− X1−, 11+

C50 11−, XX− 11−, 11+ 1X−, 11+

Cfail XX−, 11− XX−, X1− 1X−, X1−

In this sub-section, we consider the effects of evolution
on the frequencies of small subgraphs. We studied a number
of different shapes, but here we report on one, perhaps the
most informative, consisting of 3 nodes, a parent binary node
and its two sub-child nodes. This graph we call template 3a
to distinguish it from the other possible subgraphs of size
3 (which are all linear graph shapes). Table III shows the
two commonest template 3a type subtrees in generation 80,
120, 200 ofC20, C50 andCfail in the un-simplified trees. For
example,11+ is the commonest, and11− the second most
common, template 3a subtree in un-simplified trees of runs
that found a solution between generations 20 and 29 (i.e.C20)
at generation 80.

TABLE IV

MOST FREQUENT3A TEMPLATES IN EFFECTIVECODE OF INDIVIDUALS 1

Generation 80 120 200
C20 11+, S1+ 11+, S1+ 11+, S1+

C50 11+, XX+ 11+, S1+ 11+, S1+

Cfail 1X+, 11+ 1X+, 11+ 1X+, 11+

Table IV shows the equivalent analysis for effective code.
(Note that, unlike table III, some of the expressions are not
terminal expressions, sosin(...), for example, is internal, and
may be completed in different ways).

The first point to note from table III is that expressions
representing zero (11−, XX− etc.) are very common; in gen-
eration 80, only in theC20 runs does a non-zero subtree (11+)
appear. By generation 120, bothC20 andC50 feature (11+),
while Cfail shows a different nonzero expression,X1−. By
generation 200, zero-equivalent code has disappeared fromthe
top two places in all three runs. Since the nonzero expressions

differ somewhat from those which are found commonly in
the effective code (table IV), it is difficult to explain their
frequency as a result of selection; a full understanding of this
phenomenon requires further study.

Conversely, table IV shows that11+ is common in the
effective code by generation 80, in all three cases – (C20,
C50 andCfail). Howeversin appears by generation 80 only in
C20. By generation 120,11+ andS1+ are the two commonest
templates inC20 andC50, yetsin has not yet appeared inCfail,
and indeed the result is unchanged even by generation 200.

In our experiments, no solutions of the1− 2 sin2 X family
were found, all solutions being from thesin(π

2
± 2X) family.

To build this type of solution requires only one occurrence
of XX+, the more complex problem being to build an
approximation toπ

2
+ 2nπ, (n = 0,±1,±2, · · ·). We suspect

that S1+ is important in building this term, explaining its
predominance inC20 and C50 runs, and perhaps explaining
why the runs in which it was less common – theCfail runs –
failed to find a solution.

It is worth noting that this analysis is only available to us
because of table IV; it is not apparent from table III. That
is, a potent simplification method is necessary to understand
the importance of this code fragment, and potential building
block, to finding a solution.

D. The Solutions Found

TABLE V

EFFECTIVE CODE OFSMALL SOLUTIONS1

Genotype size
11 + 11 + SSX + ∗S 12
11 + 11 + SSX − ∗S 12
11 + SSX + 11 + ∗S 12

XX + 1SS1S1 − / + S 13

We investigate which classes of solutions are found by
evolution. Table V shows the two smallest (measured in
effective code) solutions found inC20 andC50 runs, of sizes
12 and 13.

The size 12 solutions can all be represented generally as:

sin(2 sin(sin 2) ± 2X) ≈ sin(
π

2
± 2X) (15)

That is, GP solved the problem using the approximation

2 sin(sin 2) ≈ 1.5781 ≈ π

2
(16)



This, in itself, is interesting - that a sufficiently good approx-
imation to π/2 can be formed (and found by GP) with only
8 nodes. However the size 13 solution is perhaps even more
interesting, having the general form

sin

(

2X +
sin(sin 1)

sin 1 − 1

)

≈ sin
(π

2
+ 2X − 2π

)

(17)

and using the approximation

sin(sin 1)

sin 1 − 1
≈ −4.7034 ≈ −3

2
π (18)

In other words, GP has been able to find a solution approxi-
mating not the first, but the second member of the family of
solutions, using only 9 nodes for the numeric approximation. It
is worth noting that phenotypic analysis, or indeed genotypic
analysis without strong simplification, could never tell usabout
this.

VI. CONCLUSIONS

We have proposed a novel GP simplification method, equiv-
alent decision simplification. We showed that EDS could
achieve substantially greater simplification than previous rule-
based methods. Applying this method, we were able to obtain
the following:

• An analysis of the quantitative dynamics of problem
complexity (bloat).

• An understanding of a useful correlation between size
and solution-finding.

• An understanding of the roles of common subtrees in the
success/failure of particular searches.

• An analysis of the different classes of solutions found by
GP search.

In other work [13], we have applied EDS and compression
analyses to understand the evolution of regular genotype
structure in a range of different GP systems – briefly, we found
that standard evolutionary systems did not evolve regular struc-
ture; developmental systems could initially generate regularity,
but without additional mechanisms (developmental evaluation)
could not maintain it; and that this effect was particularly
marked in the effective code, as opposed to the overall code.

The EDS method presented here has been implemented
as an extensible series of class libraries. The libraries are
available from http://sc.snu.ac.kr (click on the ’software’ tab).

We plan to extend this work by applying EDS to a range
of other symbolic regression problems, and to investigate the
extension of EDS to non-arithmetic problem domains
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