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Abstract— Symbolic Regression is one of the most important
applications of Genetic Programming, but these applicatios
suffer from one of the key issues in Genetic Programming, naely
bloat — the uncontrolled growth of ineffective code segmest
which do not contribute to the value of the function evolved,
but complicate the evolutionary proces, and at minimum gredy
increase the cost of evaluation. For a variety of reasons, liable
techniques to remove bloat are highly desirable — to simplif the

solutions generated at the end of runs, so that there is some

chance of understanding them, to permit systematic study ofhe
evolution of the effective core of the genotype, or even to perm
simplification of expressions during the course of a run.

Previous approaches to arithmetic simplification rely on piov-
ably safe algebraic transformations, applied as rewrite ries,
repeatedly re-writing segments of the expression until a rmimal
form is reached. This paper introduces an alternative apprach,
Equivalent Decision Simplification, in which subtrees are ealu-
ated over the set of regression points; if the subtrees evadte to
the same values as known simple subtrees, they are replaced.

Equivalent Decision Simplification performs substantially bet-
ter than standard approaches, generating far simpler exprssions,
but at the cost of computational time. It is thus well-suitedto
simplifying the final solutions generated by a run, or to postrun
analysis, but is not intended to replace algebraic simplifiation
in the course of a GP run.

I. INTRODUCTION

evolutionary behaviour of the effective part of the code
Bloat masks the true structure of building blocks, mak-
ing it difficult to determine the effect of an algorithm
on building blocks (unless bloat is removed, two code
segments with the same effective code are likely to be
treated as different).

Bloat has been heavily researched, covering its causes, way
to avoid it, and ways to remove bloat (redundant code) from
evolved trees. In this work, we emphasise simplification for
the purpose of understanding the behavior of GP populations
for understanding the evolution of effective diversityjlding
blocks etc. For such analyses, the primary goal is complete
— or at least, near complete — removal of ineffective code;
computational efficiency is much less important. We coittras
this with other applications, for example code simplifioati
within GP runs in order to exert parsimony pressure, in which
computational efficiency is crucial and completeness may be
far less important.

In this paper, we first consider previous work on sim-
plification — mainly algebraic simplification — in section Il
Section Il introduces Equivalent Decision Simplificatjiaur
new tree simplification method. The experimental context of
this study is described in section 1V, while section V prasd

5)

Genetic Programming (GP - [1]-{4]) has become welkhe results of the simplification method, and some comparati
known as a method for machine learning of models from dagsults with algebraic simplification. Finally, in sectivth, we
generally for the purpose of predicting the values of preslp  giscuss how these methods provide new information about the
un-seen data. In these applications, GP is used to genegf§iutionary behaviour of effective code GP systems, noenti
models of the data, with the fitness criterion generally geirow the software may be accessed by other researchers, and

to minimise some measure of the error in the data. discuss how we hope to extend this work in the future.
However GP suffers from a well-known problem, its propen- I

sity to generate large amounts of ineffective code (blod];- [

[3], [5], [6]). Bloat causes a number of difficulties A. Redundancy
1) Even though it has no effect on fitness, the ineffective In analysing GP dynamics, redundancy is a key issue. GP

code still has to be evaluated; as a result, the computss redundancy in the genotype-to-phenotype mapping — that

tional cost of GP is unnecessarily increased — in mang, several individuals with different genotypes may never

cases, linearly in the amount of bloat theless have the same phenotype. These different genotypes

Bloat makes it difficult to understand the meaning of thenay have different complexities, and a GP algorithm is not

model which has been generated, with the result thagnstrained to find the simplest. As a result, GP can — and

while GP is frequently cited as a white-box learner (bgenerally does — suffer from the phenomenon of bloat, in

contrast, for example, with neural networks), in realitvhich both before and after the population has converged

it often functions as a black-box, yielding no usefuphenotypically, the complexity of the individuals increas

explanatory power rapidly.

Bloat hides the true complexity of the effective part We call the genotype components which typify bloat “re-

of the model, making it difficult to trade off modeldundant structures”. We can categorise redundant stestur

complexity and accuracy, as is required under machiigo two main types:

learning theory if GP is to yield models which generalise « Neutral parts.

well to new data If we change any node in a neutral part, it has no effect

Bloat masks the behaviour of the effective part of the on the phenotypic value. For example,(r f(x), f(x)

code, making it difficult to discern or understand the is a neutral part.
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« Redundant expressions. A. Rule-based Simplification

We can represent a redundant expression by a differentgq, oy ample, let the non-terminal nodes for a given problem
smaller tree using some conversion, for examp]e_k: be {+, -+, /}, with terminal nodes{X, 1}. In this setting,
f(x) — [f(z), wherel + f(z) is a redundant expression..anonjca| simplification would entail finding the minimal
In this study, we call a neutral part an “intron”, andength formula obtainable by applying equivalent algebrai
distinguish it from a redundant expression. By definitioaes operations. However we can partially simplify by using sule
which contain introns are redundant expressions — but dvere such as] « X — X or 0« X — 0. There are many such rules
also other types of redundant expressions. in arithmetic.

Because of redundant structures, the situation can readilysoule’s simplification [5], [6] may be viewed as rule-based
occur that the phenotype space is converged, but the gemotgpnplification in which the simplification targets are limdt
space has high diversity. It is well known that redundafg introns. However we have found rule-based simplification
structures are very important in maintaining robustnessfr insufficient for our requirements. For example, the follogi
crossover and mutation. However the effects of intronsumed formula is not readily simplified by rule-based simplificati
dant structures and effective code on GP search differ, so we
need to distinguish them in analysis. (X-1D+(1-X) 1)

Regarding introns, Soule proposed the equivalent conc
of “inviable code” [5], [6], and reported the size before an
after removing the inviable code. However Soule did notgtud We propose a new simplification method based on de-
redundant expressions as a whole, but rather introns. Sotfigmining equivalence between specific simple trees and a
concluded that analysis of the amount of inviable code ig vegubtree, known as “Equivalent Decision Simplification”. In
difficult, and proposed no general method to measure it [6]this context, "equivalence” depends on the problem domain;

Regarding redundant expressions, a very simple methidda numeric domain such as symbolic regression, the de-
using grammar rewrite rules was proposed by Koza [2], btRrmination of equivalence is made numerically. That is, if

(??D.t Equivalent Decision Simplification

no results were shown. two expressions yield numerically equivalent values over a
suitable range of inputs, they are regarded as equivalent. F
[Il. SIMPLIFICATION OF GP INDIVIDUALS example, equivalent decision simplification may be cardet

We call the operation of converting a tree structure into & follows, in a symbolic regression problem.
equivalent but smaller structure “simplification”. In thstudy, 1) Determine a suitable set of simple treé®s.,pc.
we propose some novel tree simplification methods. 2) Check all subtrees in the target tree for equivalence to
First, we need to make the definition of simplification pre- a tree inSgimple-
cise. Naturally, we would like tree simplification to minisei 3) If some subtree is equivalent to a tree SQmple, and
tree size under the condition that the trees’ semantics are larger than it, replace that subtree with the simple tree.
equivalent. We call such a simplification “canonical simpli 4) Repeat this procedure recursively until it fails.

fication”. However, finding the canonical simplification of an addition, we introduce an ordering on nodes, and sort the
given tree is very difficult. For example, if a tree representhild nodes of commutative operators. One issue is how to
a program, finding the canonical simplification is equivéleqjetermine a suitabl8.ip1.. In symbolic regression problems,
to finding the minimum description of that program (i.ethe set of terminal nodes — in our casé, O (identity element
finding its Solomonoff/Kolmogorov [7] complexity). This isof +) and 1 (identity element of *) — form a reasonable
not Turing-computable. Therefore, we need to approximaighoice for S, but of course more complex choices could
In this study, we compare two simplification methods, “rulereasonably be made.
based simplification” (RBS), also known as “algebraic simpl EpS thus extends RBS by providing simplifications which
fication” and “equivalent decision simplification” (EDS). e either:

As mentioned in the introduction, we distinguish introns
from redundant expressions. Figure 1 shows an example of a
intron and a redundant expression.

1) too difficult to prove for use in RBS

rﬁ) true but unprovable in arithmetic (Goedel’s Theorem)

3) not valid, but hold (or nearly so) for the instances used
in training — in which case, they are equivalent from the

° perspective of the learning algorithm

From another perspective, we may think of RBS as a
0 syntactically-based (proof-theoretic) simplificationpapach,

—_— @ and EDS as semantically-based (model-theoretic). Thus RBS
simplifications correspond directly to proofs in the given
domain, whereas EDS simplifications correspond to model-
theoretic derivations of entailment. This has an important

Intron practical consequence: we may use the practical wisdom from
many years of work in automated derivation to guide our
choice of method: EDS is likely to be especially effective
in domains where proof-theoretic methods are difficult (con
Fig. 1. Example of Intron and Redundancy Expression tinuous arithmetic, random Boolean expressions), but meay b

comparatively more expensive in domains such as Horn clause

Redundant expression




logic (logical rules) in which highly efficient proof-theetic « Initialisation: ramped half-and-half

methods are known. « Tree Depth limit: initial limit = 6; subsequent limit = 15
Despite its computational cost, even equivalent decisione Repair mechanism: on depth violations, re-try up to 100

simplification is not a universal panacea. For example, we times

cannot simplify(X +1)(X —1) to X? —1 unless we include  The raw fitnesskF) is calculated from the sum of the

X2 —11in Sgmple- absolute errors at the 20 data points. Given 20 fithess points

Sy = {X;,i = 1,2,...,20}, the fitnessf of the individual

V. EXPERIMENTAL SETTING , ) oo
) . which represents function(X) is given by:
In this study, we use standard GP and focus on a continuous

real-arithmetic domain, using a typical symbolic regressi 20

problem [2]-[4], [8]. E = ) |cos2X;—g(Xy)| (2)
i=1
A. Problem Domain Fo= 1 3)
The chosen problem is, given the 20 randdmand Y 1+E

values shown in Figure (2) over the ranfer, ], to find An individual is regarded as a solution when all 20 errors are
an expression for the target functions 2X (in the figure, the less thar.01, as follows:

20 points are represented bysymbols). The 20 points are solution, VX, € S

generated by dividing the range into 20 even intervals, and () _ |,0082X;: —9(7sz) |<0.01 (4)
sampling uniformly randomly across each interval. The demp

is generated once for each run, then held constant throughou ) o
Table | shows the rules used in rule-based simplification.

non — solution, otherwise

the run.
TABLE |
1 T - e - - :
0.8 ’ f +< REWRITE RULES
06| ;o [ A+0 - A 0+ A—- A AXTI A IxA=A
04 % | [ AX0—0,0xA—0,sin0—0
02 [ X-X—-01-1-0A-0—A
-~ ol / P 0%0 — 1, A%0 — 1, 0%A — 0, X%X — 1, A%l — A
o2 4 ’,T 4 [ where A represents any subtree, and % represents protecied divide.
04 F + ‘r + i
-0.6 | 1 . .
08 L v/ A Ssimple N 11I-B is set t0{0,1, X }.
1 ‘2* 2 P = 2 : The flow of simplification is as follows:
« 1) Let the genotype tree of individualbe t;
_ _ 2) Apply rule-based simplification recursively to all nodes
Fig. 2. 20 sample points of t;, until there is no node to which rule-based simpli-
fication can be applied, obtainirg.
Problem 3) Apply equivalent decision simplification to all nodes of
o . t.. If any node is translated, let the translated tree;be
Objective function cos2X [—m, 7] and go to (2). If there is no node to which EDS can be
Operators {+, —, *, %, sin} applied, finish and let, be the final result.
Operands {X,1} That is, simplification is carried out repeatedly until heit

where “%” is protected division, satisfying %0 — 1. (note type of simplification — rule-based or equivalent decision —
that the target functiongos, is not included in the operatorcan be applied.

Se_?h_ blem has th e simole solu C. Numerical Computation Issues
is problem has three separate simple solutions: . . . . .
P P P This work leads to some difficult issues in numerical

optl 1 — ?TSHIQ X computation, which we consider together here.

opt2 STH(E —2X) 1) Computing Zero: Because of numerical computation

opt3  sin(§ + 2X) errors, the issue of exactly what values should be regarded
Of course, there are others: any normalised linear comibinat 55 *zero” is complex. For example, the value of the formula
and any transformation of sine’s argument by 27, will 1
give a new solution, so that there are infinitely many diffeére (D)

solutions
, is theoretically zero. However in code generated by the g++
B. GP Settings compiler on an intel 686-class architecture, this expoassi
The GP settings used in our experiments are as follows:evaluates to -1.0625E-17. One "solution” is to ignore this.

x sin(1) — 1 (5)

o Number of runs: 1000 However it seems undesirable, mainly because of the effect
o Generations per run: 200 on protected division. For example, %e, with e < 1 (e.g.¢€

« Population size: 500 might arise from eq. 5). It is treated as 0O, it evaluates to 1;

« Crossover rate: 0.9, using subtree crossover if € is treated as nonzero, it evaluates to a very large number.
« Mutation: subtree mutation, rate 0.1 We don't believe there is any completely satisfactory gaher

« Selection: tournament selection, tournament size 3  solution. Pragmatically, we chose to:



« Treat values belowt0~? as 0. 2) We treat the ratio If;/Np ) as an estimate of the
The choice of10~° was somewhat arbitrary; however probability p; of 7. (Np: population size)
we note that in this problem, the criterion for a solution 3) We compute the phenotypic entropf, as:
uses 0.01, and the range w©fis [, 7], leaving a large

margin. Hy, = — Zpi log. pi (13)
« Use the same criterion in both the GP runs and the iep
analysis program. 3) Computing Genotype EntropyGiven a population of

We note that, comparing otherwise identical runs with déffe  9enotypes (simplified or not), computation of the genotype
values ofe in the 1079 range, differences arise after abou€ntropy, parallels that of the phenotype entropy:
generation 20, so the choice ofloes have a perceptible effect. 1) Let N, be the number of instances in populatithof
2) Computing Phenotypic Measuresn this paper, the genotypeg
“phenotype” is the numerical vector of the 20 function value 2) As before, we treat the ratia\[;/Np ) as an estimate
of an individual, calculated at the 20 sample points. In prde of the probabilityp, of g.
to calculate phenotypic quantities such as the total number3) We compute the genotypic entropy, as:
of phenotype values or the entropy, we need to compare
phenotype vectors, testing whether they are the same. We Hy = — Zpg log. pg (14)
could not find a completely satisfactory theoretical deitomit ger
for 'the same’; pragmatically, we chose to: 4) Computing Simplificationstn equivalent decision sim-
« Set the acceptable error valeg. plification, we need to check whether each subtree is equiva-
« Distinguish phenotypic vectors, andv, by calculating lenttoX, “1” or “0”. We do this by checking whether it yields
the relative errotZ; of each of their components(if v;; the same value on each of the 20 sample pdhtsBut again,
is zero, thenwy; must also be zero; in this case, we maye have to deal with the problem of numerical error — what
skip the corresponding relative error check): does "the same value” mean? Again, we take a pragmatic
o1 — v approach, as there does not seem to be much theory to fall
— = (6) back on. Letf,(X) be the function computed by subtreeTo
[l check whether it is equivalent to "0”, the criterion mentah
(we use the relative error rather than the absolute errer sub-section IV-C.1 is used (the 20 valuesfofX ) must be

E; =

to avoid scale effects) below10~?). For X and 1, we check if the 20 corresponding
« If, for all i, either E;<e), or bothvy; andwvy; are zero, errors betweerf,(X) and{X or 1} are belowl0~3 (0.1%). If
then treatv, andv, as identical. so, fs(X) is regarded as equivalent{d or 1}. The following

How should we choose thig value? In this work, we chose is pseudocode for the test fof.
to sete;, to a value sufficient to distinguish between a solutiop
and a nearby non-solution. That is, we wish to distinguish

between a solution vect and a neighbouring non-solution STest array of 20 sanpl e data
ec\g)r reur:ese\rllted@ﬁd' 'ghbouring utl fs function conmputed by subtree
Veclorvaon rep y: f x function f(x)=x
Vsol = {cos2z;}, x; € St (7 */
Vaon = f{cos2z;}+1{6,0,0,---,0}, zesp (8) O X In (STest){
error = relativeError(fx, fs(x));
(note that the position of in the tuple has no effect). if(error > 0.001) return fal se;

For 6, we use the error value 0.01 previously chosen fgr
checking solutions. Then the relative norm error betwegi  return true;
andv,,, may be defined as:

||VSOI - Vnon|| o \/(5 *x0

There are many cases this criterion is not able to check.
) For example, consider an expression suchas: a, where

[|Vsol|| [ Vopt] a = 0.9 x 1077, If we test whether the whole expression from
B 0.01 (10) node “+” is zero or not, the test will fail since the value is
T 3.148273830304322... 2x09x107% = 1.8 x 1079>10"°. However,a will be
= 0.0031763437804370942... (11) found equivalent to zero because the value is below’. At
= €pheno (12) the next stepa+a — 0+ 0 — 0. Of course, this case is

not damaging, but there is some risk in other cases of growing
(where 3.148273830304322 was calculated across the rs to large values. How to treat this problem is deservin

points in our simulations). We then us&epneno ~ 0.00286  of further study.
as the critical error for distinguishing two vectors (0.9
is a margin to avoid errors). That is, we use, = D. Experimental Trials
0.0028587094023933847.... Note that it is not possible to 1000 independent runs of the GP system were performed,
simply use g++'s== for comparison, because each elemenjsing 1000 different random seeds, the entire populations
of the vector is represented aglaubl e. being saved for the subsequent analyses.
We used this to calculate phenotypic entrdpy as follows:  Part of this investigation focuses on illuminating the dif-
1) Let N; be the number of individuals in populatioR ferences between runs which are rapidly successful in fgndin
which belong to phenotypé a solution, runs which are successful more slowly, and runs



which do not succeed in finding a solution. To this end, three The genotypic diversity metric is fairly uninformative. It
separate sets of 100 runs were selected from the 1000-starts at a value just above 6, rapidly increases to aroutl 6.

sample by stratified random sampling: (the theoretical maximum isg, 500 ~ 6.21), then from about
« Cy, consisting of 100 runs which found a solutiorgeneration 10 falls very gradually to around 6.14.
between generatior) ~ 29. The phenotypic diversity metric is perhaps more interestin
« C50, consisting of 100 runs which found a solutiorfFigure 3(c) certainly shows some structure. It starts atlaeva
between generatioris) ~ 69. just below 6 . It falls rapidly to a local minimum around 4.5
o Crai, consisting of 100 runs which did not find a solutiodgeneration 4), rises rapidly to around 5.4 (generation thén
within the 200-generation limit of the runs. falls monotonically toward an asymptote.

The initial rapid loss of diversity is entirely expected,the
V. RESULTS ANDDISCUSSION system rapidly eliminates highly unfit individuals. The hex
In this section, we show a number of graphs and tablgdase, of rapidly increasing phenotypic entropy, is slight
describing the results of our experiments and analysesll In urprising, but we will see below that our new methods are
plots, the x axis shows the generation, while the y axis showsle to provide at least a partial explanation, in terms of
the value of the particular parameter under investigafidre increasing size permitting an increasing range of avaglabl
plots show three graphs, corresponding’t®), Cso and Cr.i1  effective code genotypes, and hence allowing the variation
(i.e. fast-solving, slow-solving and failing runs — respegly operators to dominate selection, at least for a time. Rpall
opt 20-29, opt 50-69 and fail in the legends). though, sufficiently good solutions are found that selectio
Itis important to consider what EDS buys us over RBS. Lefominates and diversity decreases.
us take as an example the 109, runs. These found a total EDS allows us to generate two further figures, 4(b) and 3(b).
of 102,534 different genotypes which, under EDS, reduced ligterestingly, the latter appears to bring us little adeget —
size 12 (i.e. one of the three solutions noted in table V). Theappears very similar to figure 3(c). This is an important
average size of these genotypes (prior to simplificationy woint — the phenotype entropy and the genotype entropy of
138.2. Thus more than 90% of the structure of these solutiosbtrees simplified by EDS are almost identical, strongly
was redundant code. suggesting that EDS has found most available simplification
On the other hand, if we apply only RBS, the average sizgis is confirmed by statistical testing. The differences be
of the solutions after simplification i$5.1 — that is, around tween figures 3(b) and (c) in theifyy, Cso and Cy.y values
25% of EDS simplifications are missed. In fact, only abouytspectively, were tested using Welch’s two-sideedst [9]. At
39% of the genotypes are simplified to size 12. At the oth@p point in the evolution of any of these three sets of triads d
extreme, 57 of these genotypes — which EDS simplifies to #Ze difference between the effective genotype entropy had t
nodes — retain more than 100 nodes, even after rule-based shlenotype entropy reach even the 5% significance level. This
plification; in the worst cases, two (apparently coinciddly} suggests that EDS is doing an effective job, in that there is
have 214 nodes. These are presented as examples in tabl@ijh similarity between the number of genotype species and
The rule-based simplification reported here is strictly eoithe number of phenotype species. That is, if two expressions
powerful than previous studies [5], [6], since it simplifiesire in fact equivalent (in the sense of generating the same
some instances of redundant expressions in addition to thgues at the 20 sample points), then their reduced gensitype
introns removed in the cited works. We thus argue that odfter EDS, are likely to be identical — i.e. EDAS has found
simplification approach (combining rule-based and eqgeial the true minimal form in most cases.
decision methods) constitutes a significant improvemeet, p - Figure 4(b) reveals a great deal of additional information
mitting more reliable analyses of effective code. The rdst @about the runs. Firstly, unlike the total node size, theatife
this section outlines some kinds of analyses we can perforBde size drops sharply in the first few generations, configmi
because of the effectiveness of EDS. our earlier conclusion that many solutions are rapidly,last
A. Evolutionary Dynamics of Genetic Programming suggesting _that many of the indiVidL.JaIS lost h?“’e relayiv_el
i . . . large effective code size. The effective code size thersrise
In th_ls subsectloq, we consider the evolutloqgry dynamics Papidly, as with the phenotype entropy, until about gerienat
Genetic Programming; for economy of exposition, we use thg) \yhen there is a local maximum. We interpret this phase
plots of Cz9, Cso and Cray rather than the overall population g yhe giscovery of some relatively fit, small expressiorchsu
plots, but pay attention mainly to the overall shapes of thes v 1 andsin X, These small expressions out-compete the
graphs, rather than the differences between them. first successful group of larger individuals, and size dedi
Typical studies into GP evolutionary dynamics generajgiq oqtingly, this effect seems to be stronger in runs whic

plots_such as figures 4(a) (showing the siz_e of trees_in tg?e destined to succeed soon thereafter, suggesting tleatsht
evolving populations), and 3(a) and (c) (showing the gepioty g5 e of these small expressions — perhapst — are useful
and phenotypic entropies) — though the very limited informfbuilding blocks.

Fion provided by the.genotypic entropy in this form means tha \ye note that the effective-code-size behaves in a slightly
it would usually_ be |gno_red. different way than we might expect from the seminal papers
'From .these information sources, what can we Ob,serVBi?Nordin and Banzhaf on parsimony pressures on effective
Firstly, f|gure A_'(a) shpws that.the un-simplified tree size Sode in [10]. After an initial drop in size subsequent to fimgli
monotonically increasing, but little else. the solution, effective code size continues to rise. Howeue

1Expressions are presented in Reverse Polish Notation;&f@esents sine, prObIem may be S“Qh“y_atyp'ca| in this respect, since teech
and “/” protected division. for accurate approximations tomay counterbalance the effect



TABLE Il
SIMPLIFICATION EXAMPLES: RULE BASED VS EQUIVALENT DECISIONSIMPLIFICATION?

Expression 1 Expression 2
Original 276 Nodes: 294 Nodes:
111++1- IX/ AX/ X- 1- 1X/ +1%1S1*/ 1S1+/ +11+11* X XIX++1- 111+ XX/ X- XLX++- X/ +XXX*x 1X- [ » S« 1S1
IXx 1- X6 XX+X1/ Xx - ++X11- L+1X-/ [ ++/ - X1111*- * [ XX+Lx LXx - XXk X+XX+L] 4% XXLx DX+ * DXLXK- % - % -
- - S1x+1SX1/ 1+1X- 1X- * X1111*- - - S1**/ - X1S1* X 1#/ +11+11% XX1- 114/ Xx X1- X+X1/ X - ++111- 1+X/
*1-11%11++1+S+/ 1+X1- SIX- * 1S1X- * SIX- X+ 11- [ +x] -+ X1111%--- S1*+1S11/ 1+11X- *1X+x/-11x1
16X/ 4%/ 1X/ +1SIXX11++1-// 1+1S1X- * 1SS111S+* +X+SX1/ 11% 14/ 1Xx 1- 11X+ / 11/ +X+*/ +1S11/ 1+1S
* L1SX1- Xt- Lx X/ +x [ - +x +XXIX++1-/ 11+x1- %11/ 11 1X-*XX1/ ] SS111S+%*11- 1 X/ +* [ - +% +XXLX++1- /
+SS X+XX1X++1-/ 11++1111-/ *» +x+S 11+%1-%11/11111%- - +SS* X+XXIX++1-/ 11+x1111
-/ x+%+S
Simplified | 214 Nodes: 214 Nodes:
by RBS
y X1SXx 1- 11+1+1+S*/ 1+1X- X1- Sx 1X- X+ 1X- 1S Sx * X114/ IX/ 1+X+X1- */ 11+X+S+1S11+1X- 1S+ 1S1+1S
[ IX/ +1S1X11+X+1-// 1+1X- 1Sx 1S1+1SS+ 1SX1- X+ Skx[ - +1S11+IX+LIX- */ - % IX+X+1- 1114/ 1X- IX+X+
- X/ +x ) - +1SIX+1IX- LX- * X1- Sx/ - 11+1+1- 1X/ 1X/ - IX/ +XXx 1X- 1 Xx Sk LS/ XXk X+ XX++XX+X- * XX+ Xx
X-1- 1X/ +1S/ 1S/ +11+X1- X XX+XX* - +X+X11X-/ | + 11X- Xx- %=/ +11+X1- 11+ Xx X1- X+XXx - +X+11X/ [ +
[ - % X1- SH+HLI1+XIX+X+L- [ * 1- » L1+SSX+11+XIX+X+ [ - % X1- SH+HL1+XIX+X+L- [ * 1- » 11+SSX+11+X1IX+X+
1-/*1+%+S 1-/*1+%+S
Simplified | 12 Nodes: 12 Nodes:
by EDS
11+SSX+11+xS 11+SSX+11+*S
6.18
o 2029 ——
616 [Fittetibam iy hon 55 b OPt
6.14 opt 20-29 ——
> 6.12§ opt50-69 -~ 1
§ 6.1 fail s | §
c =
¢ 6.08 1 5]
6.06 1
6.04 :
6.02 : : ; 15 s s ‘
0 50 100 150 200 0 50 100 150 200
generat\on generation

(a) Genotype Entropy (before simplification) (b) Genotypargpy (after simplification)
6
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(c) Phenotype Entropy

entropy

Fig. 3. \Variation in Entropy of Genotype and Phenotype

of parsimony pressures arising from destructive crossover only retrospectively. The phenotype entropy of a succéssfu
i run is lower than that of an unsuccessful run in the generatio
B. Comparisons of Successful and Unsuccessful Runs 4o the solution has been found, the asymptotes beingidrou
When we come to examine the differences between suc7 for a successful run, 2.5 for an unsuccessful run.
cessful and unsuccessful runs, we note first that figure 4(a)
confirms the results of [11], [12], who were unable to detect The size of the effective code (figure 4(b)) is highly corre-
a relationship between size, and when, or whether, a salutiated with the success of evolution, the three differenssis,
was found. Of course, it goes almost without saying that thi&,,, Csq and Ct,;1, being readily distinguished. They first
un-simplified genotype entropy (figure 3(a)) is also unable become distinct around generation 15 — well before the first
make such a distinction. solutions are found — indicating that effective code sizahile
However the phenotype entropy (figure 3(d}) able to to prospectivelyidentify successful runs. Thus EDS provides
distinguish the successful from the unsuccessful runitalbimportant new information, not available without an effeet
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simplification procedure. differ somewhat from those which are found commonly in

the effective code (table 1V), it is difficult to explain thei
frequency as a result of selection; a full understandinghisf t
phenomenon requires further study.

Conversely, table IV shows thatl+ is common in the
effective code by generation 80, in all three casesCoy(
Cs0 andCk,;1). Howeversin appears by generation 80 only in

C. The Effects of Evolution on Frequent Small Subtrees

TABLE Il
MOSTFREQUENT3A TEMPLATES IN UN-SIMPLIFIED INDIVIDUALS !

Gefglfaﬂoni 80 120 200 Csp. By generation 1201+ andS1+ are the two commonest
Co ﬁff;ﬁ; ﬁf ﬂ; f;: ﬂi templates irCs andCj, yetsin has not yet appeared @1,
o XX— 1= | XX— XI— [ 1X— X1 and indeed the result is unchanged even by generation 200.

In our experiments, no solutions of the- 2sin? X family
were found, all solutions being from thén (35 £ 2.X) family.

In this sub-section, we consider the effects of evolutiofy build this type of solution requires only one occurrence
on the frequencies of small subgraphs. We studied a numiger x x4 the more complex problem being to build an
of different shapes, but here we report on one, perhaps T&'@proxmatlon tof +2nm, (n=0,£1,%2,---). We suspect
most informative, consisting of 3 nodes, a parent binaryenoghat 51+ is |mportant in building this term, explaining its
and its two sub-child nodes. This graph we call template %edom”qance |r020 and 050 runs, and perhaps exp|a|n|ng
to distinguish it from the other possible subgraphs of sizghy the runs in which it was less common — tfe;; runs —

3 (which are all linear graph shapes). Table Il shows thgiled to find a solution.

two commonest template 3a type subtrees in generation 80yt is worth noting that this analysis is only available to us
120, 200 ofC3g, Cs0 and Crai in the un-simplified trees. For pecause of table IV; it is not apparent from table Ill. That
example,11+ is the commonest, antil— the second most js, a potent simplification method is necessary to undetstan

common, template 3a subtree in un-simplified trees of ruie importance of this code fragment, and potential bugdin
that found a solution between generations 20 and 29(1€)  block, to finding a solution.

neration 80. .
at generation 80 D. The Solutions Found

TABLE IV

TABLE V
MOSTFREQUENT3A TEMPLATES IN EFFECTIVECODE OFINDIVIDUALS?

EFFECTIVE CODE OF SMALL SoLuTIONS!

Generation 80 120 200 ;
Cao i+, 517 | 11+, 5iF | 11+, SiF Genotype size
TTI+SSXF+5 | 12
Cro 1T, XX+ | 114, 51t | 11+, 51+
Crai X1, 11+ | IX+, 10 [ IX+, 11 HA 11+ 55X — 5 | 12
fail +, +, + y + 11+SSX-|—11+*S 12
XX 1155151 —/+5 | 13

Table IV shows the equivalent analysis for effective code.
(Note that, unlike table Ill, some of the expressions are notwe investigate which classes of solutions are found by
terminal expressions, sgn(...), for example, is internal, and evolution. Table V shows the two smallest (measured in
may be completed in different ways). effective code) solutions found ifioy and Cs, runs, of sizes
The first point to note from table Il is that expressiong2 and 13.
representing zeral(—, X X — etc.) are very common; in gen-  The size 12 solutions can all be represented generally as:
eration 80, only in th&’y, runs does a non-zero subtrad ) . o oo
appear. By generation 120, boffy, and Cso feature (1+), sin(2sin(sin 2) £ 2X) ~ Sm(§ +2X) (15)
while Cr.;i shows a different nonzero expressiokil—. By  That is, GP solved the problem using the approximation
generation 200, zero-equivalent code has disappearedtfrem T
top two places in all three runs. Since the nonzero expressio 2sin(sin2) ~ 1.5781 ~ 5 (16)



This, in itself, is interesting - that a sufficiently good app-
imation to /2 can be formed (and found by GP) with only [y
8 nodes. However the size 13 solution is perhaps even more
interesting, having the general form

(sin 1
sin (2 + SEmDY G (f 12X — 271') (17)
sinl —1 2 2]

and using the approximation
sin(sin 1) 3]

~ —4.7034 = —gﬂ (18)

sinl —1
In other words, GP has been able to find a solution approxi-
mating not the first, but the second member of the family ofa;
solutions, using only 9 nodes for the numeric approximation
is worth noting that phenotypic analysis, or indeed geniotyp
analysis without strong simplification, could never tellalmut
this.

(5]

VI. CONCLUSIONS [6]

We have proposed a novel GP simplification method, equiv-
alent decision simplification. We showed that EDS could7]
achieve substantially greater simplification than presiaule-
based methods. Applying this method, we were able to obta{r%]
the following:

« An analysis of the quantitative dynamics of problem[g]

complexity (bloat).

« An understanding of a useful correlation between size

and solution-finding. (10]

« An understanding of the roles of common subtrees in the

success/failure of particular searches.

« An analysis of the different classes of solutions found by

GP search. [11]

In other work [13], we have applied EDS and compression
analyses to understand the evolution of regular genotype
structure in a range of different GP systems — briefly, we tbun
that standard evolutionary systems did not evolve regtilacs
ture; developmental systems could initially generate ey, [12]
but without additional mechanisms (developmental evaduat
could not maintain it; and that this effect was particularly
marked in the effective code, as opposed to the overall 00([1[&

The EDS method presented here has been implemente
as an extensible series of class libraries. The libraries ar
available from http://sc.snu.ac.kr (click on the ’softeatab).

We plan to extend this work by applying EDS to a range
of other symbolic regression problems, and to investiglage t
extension of EDS to non-arithmetic problem domains
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